Alloys & Tool Steel

Bar and Plate Products

Toolox [®] 448-2
ETD 150 [®] Analysis & Rounds8-3
AISI 4140/41L40 Products 8-4 thru 8-10
AISI 4140/4142 Products 8-11 thru 8-14
AISI 4140 As Rolled Plate8-15
AISI 4150 Hot Rolled 8-16 thru 8-18
AISI 4340 Hot Rolled 8-19 thru 8-21
AISI 6150 HR Annealed 8-22 thru 8-25
AISI 8620/86L20 8-26 thru 8-30
AISI 52100 Analysis & Rounds8-31
Alloys Tolerances8-32 thru 8-34
Tool Steel Typical Analysis 8-35 thru 8-58
Tool Wrap8-59
Tool Steel Flats & Squares 8-59 thru 8-62
Tool Steel Rounds8-63
Tolerances
Machining & Decarb Allowances 8-65 thru 8-66

MARNING: These products can potentially expose you to chemicals including Nickel, Chromium, Lead, Cobalt, Mercury and Beryllium, which are known to the state of California to cause cancer and/or birth defects or other reproductive harm. For more information, visit www.P65Warnings.ca.gov

Alloys & Tool Steel

Toolox®44

Pre-hardened Steel 45 HRC with ESR Properties

Toolox[®] 44 is a highly engineered quench & tempered pre-hardened tool and machine steel with measured and guaranteed mechanical properties. Toolox[®] 44 is delivered ready to use, no heat treating required, saving you valuable production time, reducing risks and lowering overall costs.

Toolox[®] has ESR properties. The casting process along with the low carbon concept gives a high degree of cleanliness and a homogenious structure.

The high hardness, in combination with excellent toughness, ensures lower tool wear. Toolox[®] 44 is two to three times tougher than comparable steels of similar hardness. Additional product features include:

- · Easy to machine with good dimensional stability
- High strength and toughness at esevated temperatures
- Excellent for etching, polishing and EDM
- · Low residual stresses, no stress relieving required
- Excellent substrate for surface treatments

Typical Applications

Cold Work Tooling, Machine Components, Wear Components, Guide Rails, Plastic Molds, Rubber Molds, Press Forming, Dies (Forging, Die Cast)

Typical Analysis					Toolox®	44	
Carbon (C)		0.32%					
Silicon (Si)					0.60 - 1.1	0%	
Manganese (Mn)					0.80%		
Chromium (Cr)					1.35%		
Molybdenum (Mo)					0.80%		
Vanadium	Vanadium						
Mechanical Properties	+20°C	+200°C	+300)∘C	+400°C	+500°C	
Hardness (HBW)	450						
Hardness (HRC)	Hardness (HRC) ~45						
Yield Strength R _{P0.2} (MPa) 1,300 1,150 1,1				20	1,060	930	
Tensile Strength RM (MPa)	1,450	1,380					
Elongation, A5, (%)	13	10					
Impact toughness, Charpy-V (J)	30	60	80)	80		

Note: Toolox[®]44 is not intended for further heat treatment. If Toolox[®] 44 is heated above 590° after delivery from Alro, no guarantees for the properties of the steel are given.

Thickness (inches)	Weight (lbs./sqft)
5/8	25.524
3/4	30.629
7/8	35.735
1	49.008
1-1/2	69.428

Thickness (inches)	Weight (lbs./sqft)
2	89.848
2-1/2	110.628
3	130.688
4	164.585
5	209.100

ETD 150®

E.T.D. 150[®] is produced from AISI medium carbon 4100 series alloy steel. The heats to be used for e.t.d. 150[®] are controlled to contain nitrogen in quantities normally associated with steel produced by the electric furnace process. Only one additive, such as tellurium, selenium, or sulfur is also added to improve machinability.

Like Fatigue-Proof[®], it is another Niagara LaSalle high strength material made by using specially designed dies. It eliminates heat treating and secondary operations such as straightening, finish grinding, cleaning, and inspections. e.t.d.[®] 150[®] can be roll threaded, knurled and plated. Suitable for induction hardening, e.t.d.[®] 150[®] is also electromagnetically tested using eddy currents and pretested for machinability through Niagara LaSalle's unique testing procedure.

Typical Analysis*	ETD 150 [®]
Carbon (C)	0.40 Min
Manganese (Mn)	0.70 / 1.10
Silicon (Si)	0.15 / 0.35
Chromium (Cr)	0.80 / 1.20
Molybdenum (Mo)	0.15 / 0.25

Mechanical Properties

Tensile Strength*	**150,000 psi (Min)
Yield Strength (.2% offset)	130,000psi (Min)
Elongation	5% Min
Reduction of Area	20% Min
Machinability759	% of 1212 (approx)
Rockwell C Hardness	**32 (Min)
Brinell Hardness	**302 (Min)

*ETD 150° contains additives for improving machinability. These may be Tellurium, Selenium, Sulphur (.06 max), or others, separately or in combination.

**In the event of disagreement between hardness and tensile strength, the tensile strength shall govern.

ETD 150® Rounds

Stock Lengths: 12 foot

Size (inches)	Weight (lbs./foot)	Weight (lbs./12 ft.)
1/2	0.670	8.04
9/16	0.850	10.20
5/8	1.040	12.48
11/16	1.260	15.12
3/4	1.500	18.00
13/16	1.760	21.12
7/8	2.040	24.48
1	2.670	32.04
1-1/16	3.014	36.17
1-1/8	3.379	40.55
1-3/16	3.770	45.24
1-1/4	4.170	50.04

Size	Weight	Weight
(inches)	(lbs./foot)	(lbs./12 ft.)
1-3/8	5.050	60.60
1-1/2	6.010	72.12
1-5/8	7.050	84.60
1-3/4	8.170	98.04
1-7/8	9.390	112.68
2	10.680	128.16
2-1/8	12.06	144.72
2-1/4	13.52	162.24
2-3/8	15.06	180.72
2-1/2	16.69	200.28
2-5/8	18.40	220.80
2-3/4	20.19	242.28
2-7/8	22.07	264.84
3	24.03	288.36
3-1/4	28.21	338.52
3-3/8	30.42	365.04
3-1/2	32.71	392.49

AISI 4140/41L40 - Annealed

HR / CF (Also available in DCF)

This medium carbon alloy grade is widely used for many general purpose parts requiring high tensile strength and toughness. 4140 contains chromium and molybdenum as alloying elements and may be heat treated over a wide range to give the combined advantages of proper hardness, strength and ductility. In conditions where localized hardness may be required, this steel is readily flame or induction hardened.

Typical Analysis	AISI 4140 / 41L40
Carbon (C)	0.38 / 0.43
Manganese (Mn)	0.75 / 1.00
Silicon (Si)	0.15 / 0.30
Molybdenum (Mo)	0.15 / 0.25
Chromium (Cr)	0.80 / 1.10
Phosphorus (P)	0.035 MAX
Sulphur (S)	0.040 MAX
*Lead	0.15 / 0.35

*Applies only to 4140 leaded alloy steel bars.

AISI 4140 - Annealed Flats & Squares

HR (Cut From Plate) (Also available in DCF)


Size	Weight	Size	Weight	Size	Weight
(inches)	(lbs./foot)	(inches)	(lbs./foot)	(inches)	(lbs./foot)
3/8 x		5/8 x		1 x	
3/8	0.594	2-1/4	5.114	4	14.169
1/2	0.765	2-1/2	5.667	4-1/2	15.914
5/8	0.935	2-3/4	6.220	5	17.658
3/4	1.105	3	6.773	6	21.146
1	1.446	3-1/2	7.879	8	28.123
1-1/4	1.786	4	8.985	10	35.099
1-1/2	2.126	4-1/2	10.092	12	42.076
1-3/4	2.467	5	11.198	16	56.028
2	2.807	6	13.410	20	69.981
2-1/4	3.147	8	17.834	24	83.934
2-1/2	3.488	10	22.257	1-1/4 x	
2-3/4	3.827	12	26.682	1-1/4	5.692
3	4.168	16	35.530	1-1/2	6.778
3-1/2	4.849	20	44.378	1-3/4	7.862
4	5.530	24	53.227	2	8.947
6	8.252	3/4 x		2-1/4	10.032
1/2 x		3/4	2.141	2-1/2	11.117
1/2	1.004	1	2.801	2-3/4	12.201
5/8	1.227	1-1/4	3.460	3	13.286
3/4	1.451	1-1/2	4.120	3-1/2	15.456
1	1.897	1-3/4	4.779	4	17.625
1-1/4	2.344	2	5.438	4-1/2	19.795
1-1/2	2.791	2-1/4	6.098	5	21.964
1-3/4	3.237	2-1/2	6.757	6	26.304
2	3.684	2-3/4	7.417	8	34.982
2-1/4	4.131	3	8.076	10	43.660
2-1/2	4.577	3-1/2	9.395	12	52.338
2-3/4	5.024	4	10.713	16	69.694
3	5.471	4-1/2	12.032	20	87.050
3-1/2	6.364	5	13.351	24	104.406
4	7.257	6	15.988	1-1/2 x	
4-1/2	8.151	8	21.263	1-1/2	8.106
5	9.044	10	26.538	2	10.702
6	10.831	12	31.813	2-1/4	11.999
7	12.618	16	42.363	2-1/2	13.296
8	14.404	20	52.913	2-3/4	14.594
10	17.978	24	63.463	3	15.891
12	21.551	1 x	00.100	3-1/2	18.486
16	28.697	1	3.704	4	21.081
20	35.844	1-1/8	4.141	4-1/2	23.676
24	42.991	1-1/4	4.577	5	26.271
5/8 x	72.001	1-1/2	5.449	6	31.461
5/8	1.520	1-3/4	6.321	8	41.841
3/4	1.796	2	7.193	10	52.221
1	2.349	2-1/4	8.065	12	62.600
1-1/4	2.902	2-1/4	8.937	16	83.359
1-1/2	3.455	2-3/4	9.809	20	104.119
1-3/4	4.008	3	10.681	24	124.878
2	4.000	3-1/2	12.425		.21.070

Please refer to pages 8-32 thru 8-34 for alloy tolerances.

Note, sizes not listed above can be cut from plate.

Weights above include nominal oversize tolerance. Actual weights may vary.

Continued on next page

AISI 4140 - Annealed Flats & Squares

HR (Cut from plate) (Also available in DCF)

Size (inches)	Weight (lbs./foot)	Size (inches)	Weight (lbs./foot)	Size (inches)	Weight (lbs./foot)
1-3/4 x		2-1/4 x		3 x	
1-3/4	10.945	2-3/4	21.771	5	52.112
2	12.456	3	23.707	6	62.406
2-1/2	15.476	3-1/2	27.578	8	82.996
3	18.497	4	31.449	10	103.585
4	24.537	4-1/2	35.320	12	124.174
4-1/2	27.557	5	39.191	16	165.353
5	30.578	5-1/2	43.063	20	206.532
6	36.619	6	46.934	24	247.711
8	48.700	8	62.418	3-1/2 x	
10	60.781	10	77.903	3-1/2	42.730
12	72.862	12	93.387	4	48.525
16	97.025	16	124.357	4-1/2	54.523
20	121.188	20	155.326	5	60.521
24	145.350	24	165.823	5-1/2	66.723
2 x		2-1/2 x		6	72.518
2	14.210	2-1/2	22.015	8	96.510
2-1/4	15.933	2-3/4	24.164	10	120.502
2-1/2	17.656	3	26.312	12	144.495
2-3/4	19.379	3-1/2	30.609	16	192.480
3	21.102	4	34.905	20	240.465
3-1/2	24.547	4-1/2	39,202	24	288.451
4	27.993	5	43,498	4 x	
4-1/2	31.438	5-1/2	47,795	4	55,408
5	34.885	6	52.091	4-1/2	62.257
6	41.776	8	69.277	5	69.106
8	55.559	10	86.464	5-1/2	75.955
9	62.451	12	103.650	6	82.804
10	69.342	16	138.022	8	110.199
12	83.125	20	172.394	10	137.595
16	110.690	24	206.767	12	164.991
20	138.257	3 x		16	219.782
24	165.822	3	31.522	20	274.574
2-1/4 x		3-1/2	36.670	24	329.366
2-1/4	17.900	4	41.817		
2-1/2	19.836	4-1/2	46.964		

Please refer to pages 8-32 thru 8-34 for alloy tolerances. Sizes not listed above can be cut from plate.

AISI 4140 - Annealed Rounds

HR (Also available in DCF)

Diameter (inches)	Weight (lbs./foot)	Diameter (inches)	Weight (lbs./foot)
5/8	1.044	3-1/2	33.434
3/4	1.500	3-5/8	36.070
7/8	2.040	3-3/4	38.568
1	2.676	4	43.814
1-1/8	3.384	4-1/4	49.394
1-1/4	4.176	4-1/2	55.309
1-3/8	5.052	4-3/4	61.859
1-1/2	6.012	5	68.459
1-5/8	7.056	5-1/4	75.393
1-3/4	8.172	5-1/2	82.661
1-7/8	9.384	5-3/4	91.359
2	10.680	6	99.343
2-1/8	12.234	6-1/4	107.662
2-1/4	13.704	6-1/2	116.315
2-3/8	15.258	6-3/4	126.162
2-1/2	16.896	7	135.515
2-5/8	18.724	7-1/4	145.202
2-3/4	20.533	7-1/2	155.224
2-7/8	22.426	7-3/4	165.580
3	24.409	8	176.275
3-1/8	26.463	8-1/4	187.296
3-1/4	28.872	8-1/2	199.737
3-3/8	31.111	8-3/4	211.463

Diameter (inches)	Weight (lbs./foot)
9	223.522
9-1/4	235.501
9-1/2	248.207
9-3/4	263.735
10	277.171
10-1/2	305.044
11	334.253
11-1/2	364.796
12	396.675
12-1/2*	429.889
13*	466.624
13-1/2*	502.591
14*	539.893
14-1/2*	578.531
15*	618.503
15-1/2*	659.811
16*	702.454
17*	791.746
18*	886.378
19*	986.351
20*	1091.664
22*	1318.314
24*	1566.326

Alloys & Tool Steel

* Sizes above 12" are 16-20' randoms, forged and roughturned. Please refer to pages 8-32 thru 8-34 for alloy tolerances. Stock Lengths: 20 foot

AISI 4140 Rounds - Q&T

Typical Analysis	AISI 4140
Carbon (C)	0.37 / 0.49
Manganese (Mn)	0.65 / 1.10
Silicon (Si)	0.15 / 0.35
Molybdenum (Mo)	0.15 / 0.25
Chromium (Cr)	0.75 / 1.20
Sulphur (S)	.040 MAX
Phosphorus (P)	.035 MAX
Tensile Strength	approx. 110,000 lbs psi
Yield Point	approx. 85,000 lbs psi
Brinell Hardness	269 - 341
Elongation in 2"	16%
Reduction in Area	50%

AISI 4140 - Rounds

Diameter (inches)	Weight (lbs./foot)	Diameter (inches)	Weight (lbs./foot)	Diameter (inches)	
3/4	1.500	4	43.814	10	
7/8	2.040	4-1/4	49.394	10-1/2	
1	2.670	4-1/2	55.309	11	
1-1/8	3.379	4-3/4	61.859	11-1/2	
1-1/4	4.170	5	68.459	12	
1-3/8	5.048	5-1/4	75.393	13	
1-1/2	6.010	5-1/2	82.661	13-1/2	
1-5/8	7.050	5-3/4	91.359	14	
1-3/4	8.180	6	99.343	14-1/2	
1-7/8	9.387	6-1/4	107.662	15	
2	10.680	6-1/2	116.315	15-1/2	
2-1/8	12.234	6-3/4	126.162	16	
2-1/4	13.704	7	135.515	18	
2-3/8	15.258	7-1/4	145.202	20	
2-1/2	16.896	7-1/2	155.224	22	
2-5/8	18.724	7-3/4	165.580	23	
2-3/4	20.533	8	176.275	24	
2-7/8	22.426	8-1/4	187.296	26	
3	24.645	8-1/2	199.737	28	
3-1/4	28.872	9	223.522	30	
3-1/2	33.434	9-1/2	248.207	32	
3-3/4	38.568				

Please refer to pages 8-32 thru 8-34 for alloy tolerances. Stock Lengths: 20 foot randoms, Bars over 10-1/2" diameter are forged.

AISI 4140 and 41L40* Annealed Rounds

Cold Finished

0
-
- E
2
U
S
0
Ē.
\leq
Ň
<u>e</u>
7
•
0
<u> </u>
7

Diameter (inches)	Weight (Ibs./foot)	Diameter (inches)	Weight (lbs./foot)		Diameter (inches)	Weight (lbs./foot)
3/16	0.100	1-1/8	3.379	1	2-3/8	15.060
1/4	0.170	1-3/16	3.770	1	2-1/2	16.688
5/16	0.261	1-1/4	4.172		2-9/16	17.532
3/8	0.380	1-5/16	4.600	1	2-5/8	18.398
7/16	0.510	1-3/8	5.048		2-3/4	20.192
1/2	0.668	1-7/16	5.517	1	2-7/8	22.069
9/16	0.845	1-1/2	6.008	1	3	24.030
5/8	1.043	1-9/16	6.519	1	3-1/4	28.202
11/16	1.261	1-5/8	7.050	1	3-1/2	32.708
3/4	1.500	1-3/4	8.177		3-3/4	37.547
13/16	1.763	1-7/8	9.387	1	4	42.720
7/8	2.044	1-15/16	10.023		4-1/4	48.227
15/16	2.347	2	10.680		4-1/2	54.068
1	2.670	2-1/8	12.057	1	5	66.750
1-1/16	3.010	2-1/4	13.517			

Refer to pages 8-32 thru 8-34 for alloy tolerances. Stock Lengths: 12 foot (20 foot available in most sizes). *41L40 is a superior free machining direct hardening alloy (Lead of .15/.35).

Weight (lbs./foot) 277.171 305.044 334.253 364.796

396.675 466.624 502.591 539.893 578.531 618.503 659.811 702.454 886.378 1091.664 1318.314 1435.275 1566.326 1826.400 2126.440 2443.220 2776.970

AISI 4140/4142 Q&T Rounds Cold Finish T&P

4140/4142 CF Q&T SR is a general purpose alloy used where substantial strength, toughness and hardness are required. Through tempering, quenching and the cold-finishing process, the end result is improved strength and ductility, improved toughness, better fatigue resistance and superior surface condition.

4140 CF Q&T SR Rounds are also calcium-treated for improved machinability and fully stress relieved after drawing so that distortion during machining is held to a minimum.

AISI 4140 Quench & Tempered Rounds Cold Finish T&P

Diameter (inches)	Length (feet)	Weight (lbs./foot)	Diameter (inches)	Length (feet)	Weight (lbs./foot)
3/8	12	.375	2-3/16	20	12.776
1/2	12	.667	2-1/4	20	13.516
5/8	12	1.042	2-7/16	20	15.863
3/4	12	1.501	2-1/2	20	16.687
7/8	20	2.044	2-11/16	20	19.277
1	20	2.670	2-3/4	20	20.191
1-1/8	20	3.379	2-15/16	20	23.031
1-3/16	20	3.765	3	20	24.030
1-1/4	20	4.171	3-1/4	20	28.202
1-3/8	20	5.047	3-7/16	20	31.541
1-7/16	20	5.510	3-1/2	20	32.707
1-1/2	20	6.007	3-15/16	20	41.384
1-5/8	20	7.050	4	20	42.720
1-3/4	20	8.176	4-7/16	20	52.564
1-7/8	20	9.387	4-1/2	20	54.080
1-15/16	20	10.020	5	20	66.750
2	20	10.680	6	20	96.120

Please refer to pages 8-32 thru 8-34 for alloy tolerances. Stock Lengths: 12 foot randoms.

AISI 4140 Annealed Squares

Cold Finish

Size (inches)	Weight (lbs./foot)
3/8	0.478
1/2	0.850
5/8	1.328
3/4	1.913
7/8	2.603

Size (inches)	Weight (lbs./foot)
1	3.400
1-1/8	4.303
1-1/4	5.313
1-1/2	7.650
1-1/2	7.650

Size (inches)	Weight (lbs./foot)
1-3/4	10.413
2	13.600
2-1/2	21.250
3	30.600

AISI 4140 Annealed Hexagons Cold Finish

Weight

(lbs./foot) 0.413 0.563 0.735

> 0.930 1.148 1.300 1.654 1.953 2.251

	(inches)	
	3/8	
	7/16	
	1/2	
Alloys & ool Steel	9/16	
	5/8	
	11/16	
	3/4	
A Q	13/16	
	7/8	

Size

(inches)

Size (inches)	Weight (lbs./foot)
15/16	2.584
1	2.940
1-1/16	3.324
1-1/8	3.721
1-1/4	4.594
1-3/8	5.558
1-7/16	6.085
1-1/2	6.625

Size (inches)	Weight (Ibs./foot)
1-5/8	7.763
1-3/4	9.004
1-7/8	10.350
2	11.780
2-1/4	14.910
2-1/2	18.400
2-3/4	22.220
3	26.500

Please refer to pages 8-32 thru 8-33 for alloy tolerances. Stock Lengths: 12 foot randoms

AISI 4140 Annealed Flats

Cold Finish

Size (inches)	Weight (lbs./foot)		Size Iches)	Weight (lbs./foot)	Si (inc	ze hes)	Weight (lbs./foot)
1/4 x		3/4 x			1-1/4 x		
1-1/2	1.28		1	2.55		5	21.25
2	1.70		1-1/4	3.19		6	25.50
3	2.55		1-1/2	3.83	1-1/2 x		
3/8 x			2	5.10		2	10.20
1	1.28		2-1/2	6.38		2-1/2	12.75
1-1/4	1.59		3	7.65		3	15.30
1-1/2	1.91		4	10.20		3-1/2	17.84
2	2.55		5	12.75		4	20.40
2 3	3.83		6	15.30		5	25.50
3-1/2	4.46	1 x	1-1/4	4.25		6	30.60
4	5.10		1-1/2	5.10	2 x		
1/2 x			1-3/4	5.95		2-1/2	17.00
1	1.70		2	6.80		3	20.40
1-1/2	2.55		2-1/2	8.50		3-1/2	23.80
2	3.40		3	10.20		4	27.20
2-1/2	4.25		3-1/2	11.90		5	34.00
3	5.10		4	13.60		6	40.80
4	6.80		5 6	17.00	2-1/2 x		
4-1/2	7.65		6	20.40		4	34.00
5	8.50		7	23.80	3 x		
6	10.20		8	27.20		4	40.80
5/8 x		1-1/4	x			5	51.00
1	2.13		1-1/2	6.38			
2	4.25		2	8.50			
2-1/2	5.31		2-1/4	9.56			
3	6.77		3	12.75			
4	8.50		3-1/2	14.88			
5	10.63		4	17.00			
6	12.75		4-1/2	19.13			

Please refer to pages 8-32 thru 8-34 for alloy tolerances.

AISI 4140/4142 (MOD) DCF

Medium Carbon Alloy, Pre-Hardened (Cut From Plate)

Also available in HR

4140/4142 is a fine pre-hardened alloy steel, ready for use and is machinable in its hardened state 260/321 Brinell for thickness under 3" and 241/321 Brinell for 3" and over.

Typical Applications

Strippers, Holder Blocks, Mold Bases, Ejectors, Back Up and Support Tooling, Fixtures, Jigs, Molds, Cams, and many more applications where time and money are important considerations.

Typical Analysis	AISI 4140/4142 (MOD)
Carbon (C)	0.36 / 0.46
Manganese (Mn)	0.70 / 1.70
Silicon (Si)	0.15 / 0.45
Molybdenum (Mo)	0.15 / 0.35
Chromium (Cr)	0.75 / 1.20
Phosphorus (P)	0.035 max.
Sulphur (S)	0.040 max.
Nickel (Ni)	0.50 max.
Tempering	
Tempering temperature	
Approx. tempered hardness, Rockwell C	26-34
Wear Resistance	Medium
Toughness	Very High
Resistance to Softening Effect of Elevated	
Temperature	Low
Depth of Hardening	Medium
Machinability	Medium
Grindability	High

Please refer to pages 8-32 thru 8-34 for alloy tolerances.

AISI 4140/4142 (MOD) - Flats & Squares

Pre-Hardened DCF, HR Pre-Hardened, Annealed DCF and HR Annealed (Cut from Plate)

Size (inches)	Weight (Ibs./foot)	Size (inches)	Weight (lbs./foot)	Size (inches)	Weight (Ibs./foot)
1/4 x		3/8 x		5/8 x	
1/2	0.540	12	18.691	4-1/2	10.125
5/8	0.657	16	24.858	5	11.231
3/4	0.774	20	31.024	6	13.443
1	1.008	24	37.191	8	17.867
1-1/8	1.125	32	49.524	10	22.291
1-1/4	1.242	1/2 x		12	29.006
1-1/2	1.476	1/2	1.031	16	38.576
1-3/4	1.710	5/8	1.254	20	48.146
2	1.944	3/4	1.478	24	57.715
2-1/4	2.178	1	1.924	32	76.855
2-1/2	2.412	1-1/4	2.371	3/4x	
2-3/4	2.646	1-1/2	2.818	3/4	2.181
3	2.880	1-3/4	3.264	1	2.841
3-1/2	3.348	2	3.711	1-1/4	3.500
3-3/4	3.582	2-1/4	4.158	1-1/2	4.159
4	3.816	2-1/2	4.604	1-3/4	4.819
4-1/2	4.284	2-3/4	5.051	2	5.478
5	4.751	3	5.498	2-1/4	6.137
6	5.687	3-1/2	6.391	2-1/2	6.797
7	6.623	4	7.284	2-3/4	7.456
8	7.559	5	9.071	3	8.116
9	8.495	6	10.858	3-1/2	9.434
10	9.431	6-1/2	11.751	4	10.753
12	13.533	7	12.644	5	13.390
16	17.998	8	14.431	6	16.028
20	22.463	9	16.218	8	21.303
24	26.928	10	18.004	10	26.578
32	35.858	12	23.849	12	34.164
3/8 x		14	27.783	16	45.435
3/8	0.615	16	31.717	20	56.706
1/2	0.785	18	35.651	24	67.978
5/8	0.956	20	39.585	32	90.521
3/4	1.126	20	47.453	7/8x	
1	1.466	32	63.190	7/8	2.916
1-1/4	1.806	5/8 x 5/8	1.553	1	3.299
1-1/2	2,147	3/3 X 3/8	1.829	1-1/4	4.064
1-3/4	2.487	1	2.382	1-1/2	4.830
2	2.827	1-1/4	2.362	1-3/4	5.596
_ 2-1/4	3.168	1-1/4	2.935	2	6.362
2-1/2	3.508	1-1/2	3.488 4.041	2-1/4	7.127
2-3/4	3.848	2	4.041 4.594	2-1/2	7.893
3	4.189	2-1/4	4.594	2-3/4	8.659
3-1/2	4.869	2-1/4	5.701	3	9.424
4	5.550	2-1/2 2-3/4		3-1/2	10.956
6	8.272	2-3/4	6.254 6.807	4	12.487
7	9.634	3-1/2	6.807 7.913	4-1/2	14.019
8	10.995	•=		5	15.550
10	13.718	4	9.019	v	

Please refer to pages 8-32 thru 8-34 for alloy tolerances. Note, sizes not listed above can be cut from plate.

AISI 4140/4142 (MOD) - Flats & Squares

Pre-Hardened DCF, HR Pre-Hardened, Annealed DCF and HR Annealed (Cut from Plate)

Size	Weight	Size	Weight		Size	Weight
(inches)	(lbs./foot)	(inches)	(lbs./foot)		(inches)	(lbs./foot)
7/8 x		1-1/4 x		1-1	/2 x	
6	18.613	1-1/4	5.758		4-1/2	23.754
8	24.739	1-1/2	6.843		5	26.349
10	30.865	1-3/4	7.927		6	31.539
12	39.321	2	9.012		8	41.919
16	52.294	2-1/4	10.097		10	52.298
20	65.267	2-1/2	11.182		12	65.109
24	78.240	2-3/4	12.267		16 20	86.590
32	104.186	3 3-1/2	13.351		20 24	108.071
1 x 1	3.757	4	15.521 17.690		24 32	129.552 172.514
1-1/4	4.629	4-1/2	19.860	1 2	32 3/4 x	172.514
1-1/2	5.501	5	22.030	1-3	1-3/4	11.036
1-3/4	6.373	6	26.369		2	12.546
2	7.245	8	35.047		3	18.587
2-1/4 2-1/2	8.117	10	43.725		3-1/2	21.608
2-1/2	8.989 9.861	12	54.794		4	24.628
3	10.733	16	72.872		4-1/2	27.648
3-1/2	12.478	20	90.949		5	30.669
4	14.222	24	109.027		6	36.709
4-1/2	15.966	32	145.183		8	48.791
5	17.710	1-3/8 x 1-3/8	6.918		10	60.872
6	21.198	1-1/2	7.514		12	75.424
7	24.687	1-3/4	8.705		16	100.308
8	28,175	2	9.896		20	125.192
9	31.663	2-1/4	11.087		24	150.077
10	35.151	2-1/2	12.278		32	199.845
12	44.479	2-3/4	13.469	2 x		
16	59.153	3	14.660		2	14.314
20	73.828	3-1/2	17.043		2-1/4	16.036
24	88.503	4	19.425		2-1/2	17.759
32	117.852	5	24.189		2-3/4	19.482
1-1/8 x		6	28.954		3	21.205
1-1/4	5.193	8	38.483		3-1/2	24.651
1-1/2	6.172	10	48.012		4	28.097
2	8.129	12	59.951		4-1/2 5	31.542 34.988
2-1/2	10.086	20	79.731 99.510		5 6	34.988 41.880
3	12.042	20	119.290		8	41.000 55.662
3-1/2	13.999	32	158.848		10	69.445
4	15.956	1-1/2 x 1-1/2	8.184		10	85.739
6	19.870	1-1/2 1-3/4	9.482		16	114.027
8	23.783 31.611	2	10.779		20	142.314
10	39.438	2-1/4	12.077		24	170.601
1-1/8 x 12	49.636	2-1/2	13.374		32	227.176
16	66.012	2-3/4	14.672			
20	82.389	3	15.969			
24	98.765	3-1/2	18.564			
32	131.517	4	21.159			
32	131.517	4	21.139			

Please refer to pages 8-32 thru 8-34 for alloy tolerances. Note, sizes not listed above can be cut from plate.

Continued on next page

Alloys & Tool Stee

AISI 4140/4142 (MOD) - Flats & Squares

Pre-Hardened DCF, HR Pre-Hardened, Annealed DCF and HR Annealed (Cut from Plate)

Size (inches)	Weight (lbs./foot)	Size (inches)	Weight (lbs./foot)	Size (inches)	Weight (Ibs./foot)
2-1/4 x 2-1/4	18.016	3 x 3	31.677	5 x 5	88.550
2-1/2	19.952	3-1/2	36.824	6	105.832
3	23.823	4	41.971	8	140.394
3-1/2	27.694	5	52.266	10	174.957
4	31.565	6	62.561	12	209.520
5	39.308	8	83.150	16	278.646
6	47.050	10	103.739	20	347.772
8	62.534	12	127.000	24	416.898
10	78.019	16	168.900	32	555.149
12	96.054	20	210.800	5-1/2 x 5-1/2	106.761
16	127.745	24	252.700	6 x 6	126.673
20	159.435	32	336.500	8	168.042
24	191.126	3-1/2 x 3-1/2	42.911	10	209.411
32	254.507	4	48.909	12	250.781
2-1/2 x 2-1/2	22.144	5	60.905	16	333.519
2-3/4	24.293	6	72.901	24	498.996
3	26.441	8	96.894	32	664.474
3.5	30.737	10	120.887	7 x 7	171.602
4	35.034	12	147.630	8	195.690
5	43.627	16	196.336	10	243.865
6	52.220	20	245.043	12	292.041
8	69.406	24	293.749	16	388.392
10	86.592	32	391.163	20	484.744
12	106.369	4 x 4	55.846	24	581.095
16	141.463	5	69.544	32	773.798
20	176.557	6	83.242	8 x 8	223.337
24	211.651	8	110.638	10	278.319
32	281.838	10	138.034	12	333.301
2-3/4 x 2-3/4	26.698	12	168.260	16	443.266
3	29.059	16	223.773	20	553.230
4	38.503	20	279.286	24	663.194
5	47.947	24	334.799	32	883.122
6	57.390	32	445.825		
8	76.278	4-1/2 x 4-1/2	70.745		
10	95.166	5	78.445		
12	116.684	6	93.844		
16	155.181	8	124.643		
20	193.678	10	155.442		
24	232.175	12	186.241		
32	309.169	16	247.839		
		20	309.437		
		24	371.035		
		32	494.231]	

Please refer to pages 8-32 thru 8-34 for alloy tolerances. Note, sizes not listed above can be cut from plate.

Alloys & Tool Steel

AISI 4140 - As Rolled Plate

Also available in Annealed & Pre-Hardened

4140 Hot Rolled - As Rolled is available to be saw cut or flame cut to custom sizes.

Thickness (inches)	Weight (lbs./sqft)	Thickness (inches)	Weight (Ibs./sqft)	Thickness (inches)	Weight (Ibs./sqft)
1/2	20.42	2-3/4	112.30	6	245.04
5/8	25.53	3	122.50	6-1/4	255.25
3/4	30.60	3-1/4	132.73	6-1/2	265.45
7/8	35.735	3-1/2	142.90	6-3/4	275.67
1	40.80	3-3/4	153.15	7	285.88
1-1/4	51.10	4	163.30	7-1/2	306.30
1-1/2	61.30	4-1/4	173.57	8	326.72
1-5/8	66.40	4-1/2	183.78	8-1/4	336.93
1-3/4	71.47	4-3/4	193.99	8-1/2	347.14
1-7/8	76.575	5	204.20	8-3/4	357.35
2	81.70	5-1/4	214.40	9	367.56
2-1/4	91.90	5-1/2	224.62		
2-1/2	102.10	5-3/4	234.83		

Alloys & Tool Steel

Please refer to pages 8-32 thru 8-34 for alloy tolerances.

AISI 4150 Hot Rolled Annealed

4150 grade is a medium-carbon, chromium-molybdenum steel. 4150 is also capable of good strength and wear resistance, has excellent toughness, good ductility and has the ability to resist stress and creep at prolonged high temperatures. In the annealed condition, machinability is improved.

ଟ୍ଡ	9
<u> V</u> S	E E E E
	0
\triangleleft	P

Typical Analysis	AISI 4150			
Carbon (C)	0.48 / 0.53			
Manganese (Mn)	0.75 / 1.00			
Phosphorus (P)	0.035 max			
Sulphur (S)	0.02 / 0.04			
Chromium (Cr)	0.80 / 1.10			
Molybdenum (Mo)	0.15 / 0.25			
Silicon (Si)	0.15 / 0.35			
Nickel (Ni)	0.25 max			
Copper (Cu)	0.35 max			
Vanadium (V)	0.10 max			
Aluminum (Al)	0.020 to 0.050			
Microstructure - Steel to have a predominately lamellar pearlite structure				
for optimum machinability.				

AISI 4150 Hot Rolled Annealed Rounds

Diameter (inches)	Weight (lbs./foot)
2	10.680
2-1/8	12.234
2-1/4	13.704
2-3/8	15.258
2 -1/2	16.896
2-5/8	18.724
2-3/4	20.533
2-7/8	22.426
3	24.645
3-1/8	26.717
3-1/4	28.872
3-1/2	33.434
3-5/8	36.070

Diameter (inches)	Weight (lbs./foot)
3-3/4	38.568
4	43.814
4-1/8	46.562
4-1/4	49.394
4-1/2	55.309
4-3/4	61.859
5	68.459
5-1/4	75.393
5-1/2	82.661
5-3/4	91.359
6	99.343
6-1/4	107.662
6-1/2	116.315

Diameter (inches)	Weight (lbs./foot)
6-3/4	126.162
7	135.515
7-1/4	145.202
7-1/2	155.224
7-3/4	165.580
8	176.275
8-1/4	187.296
8-1/2	199.737
8-3/4	211.463
9	223.522
9-1/4	235.501
9-1/2	248.207
10	277.171

Please refer to pages 8-32 thru 8-34 for alloy tolerances. Stock Lengths: 20 foot randoms

AISI 4150R Q&T SR Hot Rolled

(Resulphurized, Hot Rolled, Quenched and Tempered, Stress Relieved)

4150R HR Q&T SR is a free-machining alloy steel that provides an outstanding combination of heat treated properties and superior machinability. This alloy steel is manufactured under close quality control for uniformity to an ASTM grain size of 5 to 8. It is especially suitable for service applications where substantial strength, toughness and hardness are required.

Typical Analysis	AISI 4150R			
Carbon (C)	0.47 / 0.55			
Manganese (Mn)	0.75 / 1.35			
Silicon (Si)	0.15 / 0.30			
Molybdenum (Mo)	0.15 / 0.25			
Chromium (Cr)	0.70 / 1.10			
Sulphur (S)	0.06 / 0.10			
Phosphorus (P)	0.035 max.			
Tensile Strength	approx. 110,000 lbs psi			
Yield Point	approx. 85,000 lbs psi			
Brinell Hardness	269 - 341			
Elongation in 2"	16%			
Reduction in Area	51%			
Rounds 11" and up are not resulphurized.				
Flats and Squares Hot rolled, heat treated, machine straightened, stress relieved. BHN 269/321				

AISI 4150R Q&T SR Hot Rolled Rounds

Diameter (inches)	Weight (lbs./foot)	Diameter (inches)	Weight (Ibs./foot)
3/4	1.500	3-5/8	36.070
7/8	2.040	3-3/4	38.568
1	2.676	4	43.814
1-1/8	3.384	4-1/8	46.562
1-1/4	4.176	4-1/4	49.394
1-3/8	5.052	4-1/2	55.309
1-1/2	6.012	4-3/4	61.859
1-5/8	7.056	5	68.459
1-3/4	8.172	5-1/4	75.393
1-7/8	9.384	5-1/2	82.661
2	10.680	5-3/4	91.359
2-1/8	12.234	6	99.343
2-1/4	13.704	6-1/4	107.662
2-3/8	15.258	6-1/2	116.315
2 -1/2	16.896	6-3/4	126.162
2-5/8	18.724	7	135.515
2-3/4	20.533	7-1/4	145.202
2-7/8	22.426	7-1/2	155.224
3	24.645	7-3/4	165.580
3-1/8	26.717	8	176.275
3-1/4	28.872	8-1/4	187.296
3-1/2	33.434	8-1/2	199.737

Diameter (inches)	Weight (Ibs./foot)
8-3/4	211.463
9	223.522
9-1/4	235.501
9-1/2	248.207
10	277.171
10-1/2	305.044
11	334.253
11-1/2	364.796
12	396.675
12-1/2	429.889
13	466.624
13-1/2	502.591
14	539.893
14-1/2	573.511
15	618.503
16	702.454
17	791.746
18	886.378
19	986.351
20	1091.664
22	1318.314

Alro Steel Metals Guide

Please refer to pages 8-32 thru 8-34 for alloy tolerances. Rounds 12" and up are not resulphurized. Stock lengths 20' randoms

4150 Dybar - (MOD) RS Hot Rolled

4150 Dybar is a special quality alloy steel that has been resulphurized for considerations for machining. Modifications have been made to the chemical composition for increased hardenability. This steel is made by a single slab electric furnace process to a silicon fully killed practice and resulphurized to set limits.

AISI 4150
0.47 / 0.55
0.95 / 1.30
0.20 / 0.35
0.15 / 0.25
0.60 / 0.90
0.10 max.
0.06 / 0.10
0.025 max.
0.25 max.
0.015 / 0.035

4150 Dybar - (MOD) RS HR Flats & Squares

Size (inches)	Weight (lbs./foot)	(Size inches)	Weight (lbs./foot)		Size (inches)	Weight (Ibs./foot)
5/8 x		1-1/2	2 x		2	-1/2 x	
2-1/2	5.471		2-1/2	13.132		2-1/2	21.887
3	6.566		3	15.759		3	26.265
4-1/2	9.848		3-1/2	18.385		3-1/2	30.642
1 x			4	21.012		4	35.020
2-1/2	8.755		4-1/2	23.638		4-1/2	39.397
3-1/2	12.250		5	26.265		6	52.530
4-1/2	15.759		6	31.518	3	x	
1-1/8 x			7	36.810		3	31.518
2-1/2	9.848		8	42.024		4	42.024
3-1/2	13.788	1-3/4	l x			5	52.530
4-1/2	17.728		3-1/4	19.940		6	63.036
5	19.698	2 x	2-1/2	17.510	3	-1/2 x	
8	31.550		3	21.012		3-1/2	42.899
1-1/4 x			3-1/2	24.514	4	x	
2-1/2	10.943		4	28.016	·	4	56.040
3-1/2	15.321		4-1/2	31.518		8	112.170
4	17.510		5	35.050	4	-5/8 x 4-5/8	74.065
4-1/2	19.698		6	42.060			
5	21.887		8	56.080		-1/8 x 5-1/8	93.666
7	30.670				5	-5/8 x 5-5/8	112.652
Please refer to					6	-1/8 x 6-1/8	133.085

Please refer to pages 8-32 thru 8-34 for alloy tolerances.

Alloys & Tool Steel

8-19

AISI 4340 Annealed, Hot Rolled

4340 is a highly alloyed steel with high nickel and chromium content which assures deep hardening when oil quenched, with high strength characteristics throughout the section. Used for heavily stressed parts operating under strenuous conditions.

Typical Analysis	AISI 4340
Carbon (C)	0.38 / 0.43
Manganese (Mn)	0.60 / 0.80
Silicon (Si)	0.15 / 0.35
Molybdenum (Mo)	0.20 / 0.30
Chromium (Cr)	0.70 / 0.90
Nickel (Ni)	1.65 / 2.00
Sulphur (S)	0.040 max.
Phosphorus (P)	0.035 max.

AISI 4340

Q&T (For Reference Only), Hot Rolled

Typical Analysis	AISI 4340	
Carbon (C)	0.38 / 0.43	
Manganese (Mn)	0.60 / 0.80	
Silicon (Si)	0.15 / 0.35	
Molybdenum (Mo)	0.20 / 0.30	
Chromium (Cr)	0.70 / 0.90	
Nickel (Ni)	1.65 / 2.00	
Sulphur (S)	0.040 max.	
Phosphorus (P)	0.035 max.	
Tensile Strength	approx. 130,000 lbs psi	
Yield Point	approx. 100,000 lbs psi	
Brinell Hardness	285 - 363	
Elongation in 2"	approx. 14%	
Reduction in Area	approx. 35%	

Note: Mechanical Properties for Q&T are for reference only!

AISI 4340 - HR Q&T Rounds

Diameter (inches)	Weight (lbs./foot)
1	2.670
1-1/8	3.379
1-1/4	4.170
1-3/8	5.048
1-1/2	6.010
1-5/8	7.050
1-3/4	8.180
1-7/8	9.387
2	10.680
2-1/8	12.234
2-1/4	13.704
2-3/8	15.258
2-1/2	16.896
2-5/8	18.724
2-3/4	20.533
2-7/8	22.426
3	24.645
3-1/8	26.717
3-1/4	28.872

Diameter (inches)	Weight (lbs./foot)
3-1/2	33.434
3-3/4	38.568
4	43.814
4-1/4	49.394
4-1/2	55.309
4-3/4	61.859
5	68.459
5-1/4	75.393
5-1/2	82.661
5-3/4	91.359
6	99.343
6-1/4	107.662
6-1/2	116.315
6-3/4	126.162
7	135.515
7-1/4	145.202
7-1/2	155.224
7-3/4	165.580
8	176.275

Diameter (inches)	Weight (lbs./foot)
8-1/4	187.296
8-1/2	199.737
9	223.522
9-1/2	248.207
10	277.171
10-1/2	305.044
11	334.253
11-1/2	364.796
12	396.675
13	466.624
14	539.893
15	618.503
16	702.454
17	791.746
18	886.378
19	986.351
20	1091.664

Rounds over 12" are Forged, Rough Turned, Q&T

AISI 4340 - Annealed Rounds

Diameter (inches)	Weight (Ibs./foot)	D
3/4	1.500	
7/8	2.040	
1	2.676	
1-1/8	3.384	
1-1/4	4.176	
1-3/8	5.052	
1-1/2	6.012	
1-5/8	7.056	
1-3/4	8.172	
1-7/8	9.384	
2	10.680	
2-1/8	12.234	
2-1/4	13.704	
2-3/8	15.258	
2-1/2	16.896	
2-3/4	20.533	
3	24.645	
3-1/4	28.872	
3-1/2	33.434	

Diameter (inches)	Weight (lbs./foot)
3-3/4	38.568
4	43.814
4-1/8	46.562
4-1/4	49.394
4-1/2	55.309
4-5/8	58.685
4-3/4	61.859
5	68.459
5-1/4	75.393
5-1/2	82.661
5-3/4	91.359
6	99.343
6-1/4	107.662
6-1/2	116.315
6-3/4	126.162
7	135.515
7-1/2	155.224
8	176.275
8-1/4	187.296

Diameter (inches)	Weight (Ibs./foot)
8-1/2	199.737
9	223.522
9-1/4	235.501
9-1/2	248.207
10	277.171
10-1/2	305.044
11	334.253
11-1/2	364.796
12	396.675
12-1/2	429.889
13	466.624
13-1/2	502.591
14	539.893
15	618.503
16	702.454
17	791.746
18	886.378
20	1091.664

Rounds 1/2" - 11" are Hot Rolled Annealed. Rounds over 11" are Forged, Rough Turned, Annealed. Please refer to pages 8-32 thru 8-34 for alloy tolerances. Stock Lengths: 20 foot randoms

Alro Steel Metals Guide

AISI 4340 Annealed Aircraft Quality (AQ) Rounds

AISI	4340 CFA-AQ	4340 HRA-AQ
ASTM	A108, A331	A322, A304, E381
AMS	6415	6415

Diameter (inches)	Weight (lbs./foot)	4340 CFA-AQ	4340 HRA-AQ
1/2	.668		
3/4	1.500		
1	2.676		
1-1/4	4.176		
1-1/2	6.012		
1-3/4	8.172		
2	10.680		
2-1/4	13.704		
2-1/2	16.896		
2-3/4	20.533		
3	24.645		
3-1/4	28.872		
3-1/2	33.434		
3-3/4	38.568		
4	43.814		
4-1/4	49.394		
4-1/2	55.309		
4-3/4	61.859		
5	68.459		
5-1/2	82.661		
6	99.343		
6-1/2	116.315		
7	135.515		
7-1/2	155.224		
8	176.275		
8-1/2	199.737		
9	223.522		
9-1/2	248.207		
10	277.171		

Alloys & Tool Steel

AISI 6150 - Annealed, HR/DCF

An electric furnace melt of chrome vanadium steel possessing the following characteristics: oil-hardening, high resistance to vibratory stress, standard deformation, medium hardness, high torque strength and bright polish.

Typical Applications

Arbors, Heavy Machinery Parts, Gears, Shafts, High Strength Studs and Spindles.

ত্ত্র	
<u>oys</u>	So I
MIN	

Typical Analysis	AISI 6150
Carbon (C)	0.48 / 0.53
Manganese (Mn)	0.70 / 0.90
Silicon (Si)	0.15 / 0.30
Phosphorus (P)	0.035 max.
Sulphur (S)	0.040 max.
Molybdenum (Mo)	
Chromium (Cr)	0.80 / 1.10
Vanadium (V)	0.15 min.
Cobalt (Co)	
Forging (a)	1750 - 2150°F
Start forging at	(950 - 1175°C)
Do not forge below	1600° F (870°Ć)
Normalizing (b)	1650 - 1700°F
	(899 - 927°C)
Annealing (c)	
Temperature	1525 - 1575⁰F
	(828 - 855°C)
Rate of cooling, max. per hour	
Typical annealed hardness, Brinell	179 - 217
Hardening	
Rate of heating	Slowly
Preheat temperature	
Hardening temperature	1500 - 1550°F
	(816 - 843°C)
Time at temperature, minutes	, ,
Quenching medium	O (I)
Tempering	
Tempering temperature	400°F (204°C)
	· · · · · ·
Approx. tempered hardness, Rockwell C	56 - 58
Wear Resistance	Medium
Toughness	Very High
Resistance to Softening Effect of Elevated Temperature	Low
Depth of Hardening	Medium
Machinability	Medium
Grindability	High
Distortion in Heat Treating	Medium
Safety in Hardening	Low
Resistance to Carburization	Medium

AISI 6150 - Annealed Flats & Squares DCF (Cut From Plate)

Size (inches)	Weight (lbs./foot)	Size (inches)	Weight (lbs./foot)	Size (inches)	Weight (lbs./foot)
1/2 x 1/2 5/8 3/4 1 1-1/4 1-1/2 1-3/4 2 2-1/4 2-1/2 2-3/4 3 3-1/2 4 5 6 8	1.031 1.254 1.478 1.924 2.371 2.818 3.264 3.711 4.158 4.604 5.051 5.498 6.391 7.284 9.071 10.858 14.431	3/4 x 3/4 1 1-1/4 1-1/2 1-3/4 2 2-1/4 2-1/2 2-3/4 3 3-1/2 4 5 6 8 10 12	2.181 2.841 3.500 4.159 4.819 5.478 6.137 6.797 7.456 8.116 9.434 10.753 13.390 16.028 21.303 26.578 34.164	1-1/4 x 2 2-1/4 2-1/2 2-3/4 3 3-1/2 4 4-1/2 5 6 8 10 12 16 20 24 32	9.012 10.097 11.182 12.267 13.351 15.521 17.690 22.030 26.369 35.047 43.725 54.794 72.872 90.949 109.027 145.183
10 12 16 20 24	18.004 23.849 31.717 39.585 47.453	16 20 24 32	45.435 56.706 67.978 90.521	1-3/8 x 1-3/8 1-1/2 1-3/4 2	6.918 7.514 8.705 9.896
5/8 x 5/8 3/4 1 1-1/4 1-1/2 1-3/4 2 2-1/4 2-1/2 2-3/4 3 3-1/2 4 4-1/2	1.553 1.829 2.382 2.935 3.488 4.041 4.594 5.148 5.701 6.254 6.807 7.913 9.019 10.125	1 1-1/4 1-1/2 1-3/4 2 2-1/4 2-1/2 2-3/4 3 3-1/2 4 4-1/2 5 6 7	3.757 4.629 5.501 6.373 7.245 8.117 8.989 9.861 10.733 12.478 14.222 15.966 17.710 21.198 24.687	2-1/4 2-1/2 2-3/4 3 3-1/2 4 5 6 8 10 12 16 20 24 32	11.087 12.278 13.469 14.660 17.043 19.425 24.189 28.954 38.483 48.012 59.951 79.731 99.510 119.290 158.848
5 5-1/2 6 7 8 9 10 12 16 20	11.231 12.337 13.443 15.655 17.867 20.079 22.291 29.006 38.576 48.146	8 10 12 16 20 24 32 1-1/8x 2-1/2 4-1/2	28.175 35.151 44.479 59.153 73.828 88.503 117.852 10.086 17.913	1-1/2 x 1-1/2 1-3/4 2 2-1/4 2-1/2 2-3/4 3 3-1/2 4	8.184 9.290 10.587 11.885 13.182 14.480 15.803 18.372 20.967
24 32	57.715 76.855	1-1/4 x 1-1/4 1-1/2 1-3/4	5.758 6.843 7.927	4-1/2 5 6	23.562 26.157 31.347

Please refer to pages 8-32 thru 8-34 for alloy tolerances. Note, sizes not listed above can be cut from plate.

Continued on next page

Alloys & Tool Steel

Airo Steel Metals Guide

AISI 6150 - Annealed Flats & Squares

DCF (Cut From Plate)

Size (inches)	Weight (lbs./foot)	(1	Size inches)	Weight (lbs./foot)	(Size inches)	Weight (lbs./foot)
1-1/2 x		2-1/2	2 x		4 x		
8	41.727		2-1/2	22.144		4	55.846
10	52.106		2-3/4	24.293		5	69.544
12	65.109		3	26.441		6	83.242
16	83.246		3-1/2	30.737		8	110.638
20	104.005		4	35.034		10	138.034
24	127.765		5	43.627		12	168.260
32	166.284		6	52.220		14	196.016
1-3/4 x			8	69.406		16	223.773
1-3/4	11.036		10	86.592		20	279.286
2	12.546		12	106.369		24	334,799
3	18.587		16	141.463		32	445.825
3-1/2	21.608		20	176.557	4-1/		110.020
4	24.628		24	211.651	,	4-1/2	72.041
4-1/2	27.648	3 x		211.001		5	79.831
5	30.669	• ^	3	31.677		6	95.411
5-1/2	33.689		3-1/2	36.824		8	126.571
6	36.709		4	41.971		10	157.730
7	42.750		5	52.266		12	188.890
8	48.791		6	62.561		16	251.209
9	54.831		8	83.150		20	313.529
10	60.872		10	103.739		24	375.848
12	75.424		12	127.000		32	500.487
16	100.308		14	147.950	5 x	52	300.407
20	125.192		16	168.900	•	5	88.550
24	150.077		20	210.800		6	105.832
32	199.845		24	252.700		8	140.394
2 x	100.040		32	336.500		10	174.957
2	14.314	3-1/2		000.000		12	209.520
2-1/4	16.036	0 1/2	3-1/2	42.911		16	278.646
2-1/2	17.759		4	48.909		20	347.772
2-3/4	19.482		5	60.905		24	416.898
3	21.205		6	72.901		32	555.149
3-1/2	24.651		8	96.894	6 x	02	000.140
4	28.097		10	120.887	~ ^	6	126.673
4-1/2	31.542		12	147.630		8	168.042
5	34.988		16	196.336		10	209.411
6	41.880		20	245.043		12	250.781
8	55.662		24	293.749		16	333.519
10	69.445		32	391.163		20	416.258
12	85.739		<u><u></u></u>			24	498.996
16	114.027					32	664.474
20	142.314					<u>VL</u>	
24	170.601						
32	227.176						

Please refer to pages 8-32 thru 8-34 for alloy tolerances. Note, sizes not listed above can be cut from plate.

Alro Steel Metals Guide

AISI 6150 - Annealed HR Rounds

Diameter (inches)	Weight (lbs./foot)	Diameter (inches)	Weight (lbs./foot)	Diameter (inches)	Weight (Ibs./foot)
1	2.676	3-3/4	38.175	8	174.251
1-1/8	3.384	4	43.394	8-1/4	185.204
1-1/4	4.176	4-1/4	48.939	8-1/2	197.178
1-3/8	5.052	4-1/2	54.822	8-3/4	208.818
1-1/2	6.012	4-3/4	61.243	9	220.816
1-5/8	7.056	5	67.804	9-1/4	235.501
1-3/4	8.180	5-1/4	74.699	9-1/2	248.207
1-7/8	9.390	5-1/2	81.928	10*	277.171
2	10.680	5-3/4	90.203	10-1/2*	305.044
2-1/8	12.230	6	98.146	11*	334.253
2-1/4	13.704	6-1/4	103.390	11-1/2*	364.796
2-1/2	16.896	6-1/2	114.985	12*	396.675
2-5/8	18.724	6-3/4	123.078	13*	466.624
2-3/4	20.533	7	133.771	14*	539.893
3	24.409	7-1/4	143.397	15*	618.503
3-1/4	28.606	7-1/2	153.348	16*	702.454
3-1/2	33.143	7-3/4	163.633	* Over 10" is a	forged

Alloys & Tool Steel

Diameter tolerance may vary depending on sourcing. Stock Lengths: 20 foot randoms

AISI 8620/86L20

Carefully controlled proportions of chromium, nickel and molybdenum are responsible for the extensive use of 8620 as a carburizing alloy steel. Valuable features of this grade include extreme surface hardenability and internal strength.

Typical Analysis	AISI 8620 / 86L20
Carbon (C)	0.18 / 0.23
Manganese (Mn)	0.70 / 0.90
Silicon (Si)	0.15 / 0.30
Nickel (Ni)	0.40 / 0.70
Molybdenum (Mo)	0.15 / 0.25
Chromium (Cr)	0.40 / 0.60
Phosphorus (P)	0.035 MAX
Sulphur (S)	0.040 MAX
*Lead	0.15 / 0.35

*Applies only to 8620 leaded alloy steel bars.

AISI 8620 Flats and Squares

HR (Cut From Plate)

Size (inches)	Weight (lbs./foot)	Size (inches)	Weight (lbs./foot)	Size (inches)	Weight (lbs./foot)
3/8 x		5/8 x		1 x	
3/8	0.594	2-1/4	5.114	4	14.169
1/2	0.765	2-1/2	5.667	4-1/2	15.914
5/8	0.935	2-3/4	6.220	5	17.658
3/4	1.105	3	6.773	6	21.146
1	1.446	3-1/2	7.879	8	28.123
1-1/4	1.786	4	8.985	10	35.099
1-1/2	2.126	4-1/2	10.092	12	42.076
1-3/4	2.467	5	11.198	16	56.028
2	2.807	6	13.410	20	69.981
2-1/4	3.147	8	17.834	24	83.934
2-1/2	3.488	10	22.257	1-1/4 x	
2-3/4	3.827	12	26.682	1-1/4	5.692
3	4.168	16	35.530	1-1/2	6.778
3-1/2	4.849	20	44.378	1-3/4	7.862
4	5.530	24	53.227	2	8.947
6	8.252	3/4 x		2-1/4	10.032
1/2 x		3/4	2.141	2-1/2	11.117
1/2	1.004	1	2.801	2-3/4	12.201
5/8	1.227	1-1/4	3.460	3	13.286
3/4	1.451	1-1/2	4.120	3-1/2	15.456
1	1.897	1-3/4	4.779	4	17.625
1-1/4	2.344	2	5.438	4-1/2	19.795
1-1/2	2.791	2-1/4	6.098	5	21.964
1-3/4	3.237	2-1/2	6.757	6	26.304
2	3.684	2-3/4	7.417	8	34.982
2-1/4	4.131	3	8.076	10	43.660
2-1/2	4.577	3-1/2	9.395	12	52.338
2-3/4	5.024	4	10.713	16	69.694
3	5.471	4-1/2	12.032	20	87.050
3-1/2	6.364	5	13.351	24	104.406
4	7.257	6	15.988	1-1/2 x	
4-1/2	8.151	8	21.263	1-1/2	8.106
5	9.044	10	26.538	2	10.702
6	10.831	12	31.813	2-1/4	11.999
7	12.618	16	42.363	2-1/2	13.296
8	14.404	20	52.913	2-3/4	14.594
10 12	17.978	24	63.463	3 3-1/2	15.891
12	21.551	1 x	2 704		18.486
16 20	28.697 35.844	1-1/8	3.704 4.141	4 4-1/2	21.081 23.676
20 24		1-1/8	4.141 4.577	4-1/2	23.676
24 5/8 x	42.991	1-1/4	4.577 5.449	6	31.461
5/8 X	1.520	1-1/2	6.321	8	41.841
3/4	1.796	2	7.193	10	52.221
1	2.349	2-1/4	8.065	12	62.600
1-1/4	2.349	2-1/4	8.937	16	83.359
1-1/2	3.455	2-1/2	9.809	20	104.119
1-3/4	4.008	3	10.681	20	124.878
2	4.561	3-1/2	12.425	<u> </u>	124.070

Please refer to pages 8-32 thru 8-34 for alloy tolerances.

Note, sizes not listed above can be cut from plate, please inquire.

Weights above include nominal oversize tolerance. Actual weights may vary.

Continued on next page

leets lool

AISI 8620 Flats and Squares

HR (Cut From Plate)

Size (inches)	Weight (lbs./foot)	Size (inches)	Weight (lbs./foot)	Size (inches)	Weight (lbs./foot)
1-3/4 x		2-1/4 x		3 x 3	31.522
1-3/4	10.945	2-1/4	17.900	3-1/2	36.670
2	12.456	2-1/2	19.836	4	41.817
2-1/2	15.476	2-3/4	21.771	4-1/2	46.964
3	18.497	3	23.707	5	52.112
4	24.537	3-1/2	27.578	6	62.406
4-1/2	27.557	4	31.449	8	82.996
5	30.578	4-1/2	35.320	10	103.585
6	36.619	5	39.191	12	124.174
8	48.700	5-1/2	43.063	16	165.353
10	60.781	6	46.934	20	206.532
12	72.862	8	62.418	24	247.711
16	97.025	10	77.903	3-1/2 x	
20	121.188	12	93.387	3-1/2	42.730
24	145.350	16	124.357	4	48.525
2 x		20	155.326	4-1/2	54.523
2	14.210	24	165.823	5	60.521
2-1/4	15.933	2-1/2 x		5-1/2	66.723
2-1/2	17.656	2-1/2	22.015	6	72.518
2-3/4	19.379	2-3/4	24.164	8	96.510
3	21.102	3	26.312	10	120.502
3-1/2	24.547	3-1/2	30.609	12	144.495
4	27.993	4	34.905	16	192.480
4-1/2	31.438	4-1/2	39.202	20	240.465
5	34.885	5	43.498	24	288.451
6	41.776	5-1/2	47.795	4 x 4	55.408
8	55.559	6	52.091	4-1/2	62.257
9	62.451	8	69.277	5	69.106
10	69.342	10	86.464	5-1/2	75.955
12	83.125	12	103.650	6	82.804
16	110.690	16	138.022	8	110.199
20	138.257	20	172.394	10	137.595
24	165.822	24	206.767	12	164.991
-				16	219.782
Please refer to	pages 8-32 thru	1 8-34 for alloy tole	erances.	20	274.574
M				0.4	000 000

Please refer to pages 8-32 thru 8-34 for alloy tolerances. Note, sizes not listed above can be cut from plate.

24

329.366

AISI 8620 HR Rounds

Diameter (inches)	Weight (lbs./foot)	Diameter (inches)	Weight (lbs./foot)	Diameter (inches)	Weight (lbs./foot)
5/8	1.044	3-1/8	26.717	8-1/2	199.737
3/4	1.500	3-1/4	28.872	8-3/4	211.463
7/8	2.040	3-1/2	33.434	9	223.522
1	2.676	3-5/8	36.070	9-1/4	235.501
1-1/16	3.01	3-3/4	38.568	9-1/2	248.207
1-1/8	3.384	4	43.814	9-3/4	253.812
1-3/16	3.76	4-1/8	46.562	10	277.171
1-1/4	4.176	4-1/4	49.394	10-1/4	290.941
1-5/16	4.60	4-1/2	55.309	10-1/2	305.044
1-3/8	5.052	4-3/4	61.859	11	334.253
1-7/16	5.52	5	68.459	11-1/2	364.796
1-1/2	6.012	5-1/4	75.393	12	396.675
1-5/8	7.056	5-1/2	82.661	12-1/2	429.889
1-3/4	8.172	5-3/4	91.359	13	466.624
1-7/8	9.384	6	99.343	14	539.893
2	10.680	6-1/4	107.662	15	618.503
2-1/8	12.234	6-1/2	116.315	16	702.454
2-1/4	13.704	6-3/4	126.162	17	791.746
2-3/8	15.258	7	135.515	18	886.378
2-1/2	16.896	7-1/4	145.202	19	986.351
2-5/8	18.724	7-1/2	155.224	20	1091.664
2-3/4	20.533	7-3/4	165.580	22	1318.314
2-7/8	22.426	8	176.271	24	1566.326
3	24.645	8-1/4	187.296	26	1835.701

Please refer to pages 8-32 thru 8-34 for alloy tolerances. Stock Lengths: 18 - 20 foot randoms

AISI 8620 CF Rounds

Diameter (inches)	Weight (Ibs./foot)	Diameter (inches)	Weight (lbs./foot)
1/4	0.167	1-3/16	3.765
5/16	0.261	1-1/4	4.172
3/8	0.375	1-5/16	4.599
7/16	0.511	1-3/8	5.048
1/2	0.668	1-7/16	5.517
9/16	0.845	1-1/2	6.008
5/8	1.043	1-5/8	7.050
11/16	1.262	1-3/4	8.177
3/4	1.502	1-7/8	9.387
13/16	1.763	2	10.680
7/8	2.044	2-1/8	12.057
15/16	2.347	2-1/4	13.517
1	2.670	2-3/8	15.060
1-1/16	3.014	2-1/2	16.688
1-1/8	3.379	2-5/8	18.398

Diameter (inches)	Weight (lbs./foot)
2-3/4	20.192
2-7/8	22.069
3	24.030
3-1/8	26.074
3-1/4	28.202
3-3/8	30.413
3-1/2	32.708
3-3/4	37.547
4	42.720
4-1/4	48.227
4-1/2	54.068
4-3/4	60.242
5	66.750
6	96.120

Alro Steel Metals Guide

Please refer to pages 8-32 thru 8-34 for alloy tolerances. Stock Lengths: 12 foot (20 foot also available in most sizes).

AISI 86L20 CF Rounds

Diameter (inches)	Weight (Ibs./foot)
3/8	0.38
1/2	0.67
9/16	0.85
5/8	1.04
3/4	1.50
13/16	1.76
7/8	2.04
15/16	2.35
1	2.67
1-1/8	3.38

Diameter (inches)	Weight (Ibs./foot)
1-1/4	4.17
1-5/16	4.60
1-3/8	5.05
1-7/16	5.52
1-1/2	6.01
1-5/8	7.05
1-3/4	8.18
1-7/8	9.39
2	10.68
2-1/8	12.06

Diameter (inches)	Weight (lbs./foot)
2-1/4	13.52
2-3/8	15.06
2-1/2	16.69
2-5/8	18.40
2-3/4	20.19
3	24.03
3-1/4	28.20
3-1/2	32.71

AISI 8620 HR Plate

Thickness (inches)	Weight (Ibs./sqft)
1/2	20.4
3/4	30.6
1	40.8
1-1/8	45.9
1-1/4	51.0
1-1/2	61.2
1-3/4	71.47

Thickness (inches)	Weight (lbs./sqft)
2	81.6
2-1/4	91.89
2-1/2	102.0
2-3/4	112.31
3	122.4
3-1/2	142.9
4	163.3

Refer to pages 8-32 thru 8-34 for alloy tolerances.

AISI 52100

AISI 52100 is a moderately deep hardening alloy having high resistance to wear, medium toughness, and low resistance to softening at high temperatures.

Typical Analysis	AISI 52100
Carbon (C)	0.98 / 1.10
Manganese (Mn)	0.25/ 0.45
Silicon (Si)	0.15 - 0.30
Chromium (Cr)	1.30 / 1.60
Phosphorus (P)	0.025 MAX
Sulphur (S)	0.025 MAX
Physical Properties	
Contact Alro for specific certification.	

AISI 52100 Rounds Spheroidize Annealed, B.Q.

Diameter (inches)	Weight (lbs./foot)	Diameter (inches)	Weight (lbs./foot)	Diameter (inches)	Weight (lbs./foot)
3/8	0.380	2	10.680	5-1/4	73.590
1/2	0.667	2-1/4	13.512	5-1/2	80.767
5/8	1.042	2-3/8	15.060	6	96.120
3/4	1.501	2-1/2	16.687	6-1/4	104.296
13/16	1.760	2-5/8	18.400	6-1/2	112.807
7/8	2.044	2-3/4	20.191	6-3/4	123.078
1	2.670	3	24.030	7	130.830
1-1/8	3.379	3-1/4	28.201	7-1/2	150.187
1-1/4	4.171	3-1/2	32.710	8	170.880
1-3/8	5.047	3-3/4	37.547	8-1/2	197.178
1-1/2	6.007	4	42.720	9	220.816
1-5/8	7.050	4-1/4	48.230	10	277.171
1-3/4	8.176	4-1/2	54.067	11	334.253
1-13/16	8.780	4-3/4	60.240	12	396.675
1-7/8	9.386	5	66.750		

Diameter tolerance may vary depending on sourcing.

Hot Rolled Alloy Bars

Size Tolerances and Out-of-Round or Out-of Square Tolerances

Hot Rolled Alloy Bars Round, Square and Round-Cornered Square				
Specified Sizes		nces (inches)	Out-of-Round or Out-of-Square	
(inches)	Over	Under	Section (inches)	
Up thru 5/16	0.005	0.005	0.008	
Over 5/16 thru 7/16	0.006	0.006	0.009	
Over 7/16 thru 5/8	0.007	0.007	0.010	
Over 5/8 thru 7/8	0.008	0.008	0.012	
Over 7/8 thru 1	0.009	0.009	0.013	
Over 1 thru 1-1/8	0.010	0.010	0.015	
Over 1-1/8 thru 1-1/4	0.011	0.011	0.016	
Over 1-1/4 thru 1-3/8	0.012	0.012	0.018	
Over 1-3/8 thru 1-1/2	0.014	0.014	0.021	
Over 1-1/2 thru 2	1/64	1/64	0.023	
Over 2 thru 2-1/2	1/32	0	0.023	
Over 2-1/2 thru 3-1/2	3/64	0	0.035	
Over 3-1/2 thru 4-1/2	1/16	0	0.046	
Over 4-1/2 thru 5-1/2	5/64	0	0.058	
Over 5-1/2 thru 6-1/2	1/8	0	0.070	
Over 6-1/2 thru 8-1/4	5/32	0	0.085	
Over 8-1/4 thru 9-1/2	3/16	0	0.100	
Over 9-1/2 thru 10	1/4	0	0.120	

Out-of-round is the difference between the maximum and minimum diameters of the bar, measured at the same transverse cross section. Out-of-square section is the difference in perpendicular distance between opposite faces, measured at the same transverse cross section.

Size Tolerances - Rounds

Turned, Ground & Polished		
Diameter Range (inches)	Heat Treated	
Up thru 1-1/2	+0 - 0.0015	
Over 1-1/2 thru 2-1/2	+0 - 0.0020	
Over 2-1/2 thru 3	+0 - 0.0025	
Over 3 thru 4	+0 - 0.0035	
Over 4 thru 6	+0 - 0.0045	

Straightness is a perishable tolerance; therefore, reasonable care in handling and storage should be taken to avoid bending the bars. Deviation from straightness is measured by placing the bar on a level table so that the arc or deviation from straightness is horizontal, and the depth of the arc is measured with a steel scale and a straight edge. A tightly-stretched string can be used as a substitute for a steel scale.

Hot Rolled Bars	1/4" in any 5 ft. or	1/4 x <u>no. of ft. of length</u> inches
Hot Rolled, Thermally Treated	1/4" in any 5 ft. or	$1/4 \times \frac{\text{no. of ft. of length}}{5}$ inches

* There is not a published flatness or straightness tolerance for flat bars.

Straightness *Tolerances - Steel Bars

Cold Finished Bars

Form Size (inches)	Length (feet)	Maximum Curvature (Depth of arc in inches)
	Rounds	
Less than .28 Carbon		
Less than 5/8"	Less than 15'	1/8" in any 10' portion of the total length
Less than 5/8"	15' and over	1/8" in any 10' portion of the total length
5/8" and over	Less than 15'	1/16" in any 10' portion of the total length
5/8" and over	15' and over	1/8" in any 10' portion of the total length
.28 Carbon and over and all	heat treated material	
Less than 5/8"	Less than 15'	3/16" in any 10' portion of the total length
Less than 5/8"	15' and over	5/16" in any 10' portion of the total length
5/8" and over	Less than 15'	1/8" in any 10' portion of the total length
5/8" and over	15' and over	3/16" in any 10' portion of the total length
	Hexagons & Square	es
Less than .28 Carbon		
Less than 5/8"	Less than 15'	3/16" in any 10' portion of the total length
Less than 5/8"	15' and over	5/16" in any 10' portion of the total length
5/8" and over	Less than 15'	1/8" in any 10' portion of the total length
5/8" and over	15' and over	3/16" in any 10' portion of the total length
.28 Carbon and over and all	heat treated material	
Less than 5/8"	Less than 15'	1/4" in any 10' portion of the total length
Less than 5/8"	15' and over	3/8" in any 10' portion of the total length
5/8" and over	Less than 15'	3/16" in any 10' portion of the total length
5/8" and over	15' and over	1/4" in any 10' portion of the total length

8-33

* There is not a published flatness or straightness tolerance for flat bars.

Thickness & Width Oversize Ranges

De-Carb Free Flats and Squares

Size (inches)	Width - Based on Thickness (inches)	Thickness (inches)
Through 4" thick	+.035 / +.077 oversize	+.015 / +.035 oversize
Rough Milled 4" thru <5"	+.062 / +.124 oversize	+.062 / +.125 oversize
Rough Milled 5" and over	+.062 / +.124 oversize	+.125 / +.250 oversize

Thickness Tolerances

4140 HRA and 8620 HR Flats

All widths range from .035 - .124 oversize

Thickness (inches)	Tolerance
3/8	
1/2	+.0301
5/8	+.0401
3/4 and 7/8	+.0401
1 to 1-7/8	+.0701
2 to 2-3/4	+.1101
3 to 3-3/4	+.1301
4 to 4-1/2	+.1501

Standard Manufacturing Tolerances

Cold Finished Alloy Bars (Undersize variation in inches)

Size & Shape	Carbon thru .28% Max.	Max. Carbon over .28% thru .55%	Max. Carbon over .55% or All Carbons Heat Treated	E.T.D. 150®
Rounds (Cold Drawn or				
Turned and Polished)				
Up thru 1-1/2	.003	.004	.006	.005
Over 1-1/2 thru 2-1/2	.004	.005	.007	.006
Over 2-1/2 thru 4	.005	.006	.008	.007
Over 4 thru 6	.006	.007	.009	
Over 6 thru 8	.007	.008	.010	
Over 8 thru 9	.008	.009	.011	
Hexagons				
Up thru 3/4	.003	.004	.007	
Over 3/4 thru 1-1/2	.004	.005	.008	
Over 1-1/2 thru 2-1/2	.005	.006	.009	
Over 2-1/2 thru 3-1/8	.006	.007	.010	
Squares				
Up thru 3/4	.003	.005	.008	
Over 3/4 thru 1-1/2	.004	.006	.009	
Over 1-1/2 thru 2-1/2	.005	.007	.010	
Over 2-1/2 thru 3-1/8	.007	.009	.012	
Flats (Width)				
Up thru 3/4	.004	.006	.009	
Over 3/4 thru 1-1/2	.005	.007	.011	
Over 1-1/2 thru 3	.006	.008	.013	
Over 3 thru 4	.007	.010	.017	
Over 4 thru 6	.009	.012	.021	
Over 6	.014			

Note: Tolerances for flats apply to thickness as well as to width.

AISI A2 DCF

An air-hardening tool steel containing five percent chromium. Replaces the oil hardening (O1 type) when safer hardening, less distortion and increased wear-resistance are required. Provides an intermediate grade between the oil hardening and the high carbon, high chromium (D2) types.

Typical Applications

Large Blanking Dies, Thread Roller Dies, Long Punches, Rolls, Master Hubs, Trimming Dies, Forming Dies, Precision Tools, Gauges, Coining Dies, Extrusion Dies, Mandrels, Shear Blades and Slitters.

Typical Analysis	Type A2 (UNS T30102)	
Carbon (C)	0.95 / 1.05	
Manganese (Mn)	1.00 max.	
Silicon (Si)	0.50 max.	
Tungsten (W)		
Molybdenum (Mo)	0.90 / 1.40	
Chromium (Cr)	4.75 / 5.50	
Vanadium (V)	0.15 / 0.50	
*Nickel (Ni)	0.30 max.	
Forging (a) Start forging at	1850 - 2000°F (1010 - 1093°C)	
Do not forge below	1650°F (899°C)	
Normalizing (b)	Do not normalize	
Annealing (c) Temperature Rate of cooling, max. per hour	1550 - 1600°F (843 - 871°C) 40°F (22°C)	
Typical annealed hardness, Brinell	201 - 235	
Hardening		
	Slowly	
Rate of heating	Slowly 1450 °F (788°C)	
Preheat temperature Hardening temperature	1430 F (788 C) 1700 - 1800°F (927 - 962°C)	
Time at temperature, minutes	20 - 45 (j)	
Quenching medium	A (I)	
Tempering		
Tempering temperature	350 - 1000°F (177 - 538°C)	
Approx. tempered hardness, Rockwell C	57 - 62	
Wear Resistance	High	
Toughness	Medium	
Resistance to Softening Effect of		
Elevated Temperature	Medium to High	
Depth of Hardening	Deep	
Machinability	Medium	
Grindability	Medium	
Distortion in Heat Treating	Lowest	
Safety in Hardening	Highest	
Resistance to Decarburization	Medium	

Please refer to pg. 8-58 for notes (a) to (o) incl., explanation of letter 0, A, S, B and W. *Unless otherwise specified, nickel plus copper equal 0.75% max. for all tool steel types.

AISI A6

A6 is an air-hardening, non-deforming tool steel that combines the deep hardening characteristics of air-hardening steels with the simplicity of low temperature heat treatment possible in many of the oil-hardening grades.

Typical Applications

Blanking Dies, Precision Tools, Forming Dies, Coining Dies, Master Hubs, Shear Blades, Plastic Molds, Spindles, Mandrels, Heavy Duty Punches.

Typical Analysis	Type A6 (UNS T30106)	
Carbon (C)	0.65 / 0.75	
Manganese (Mn)	1.80 / 2.50	
Silicon (Si)	0.50 max.	
Tungsten (W)		
Molybdenum (Mo)	0.90 / 1.40	
Chromium (Cr)	0.90 /1.20	
Vanadium (V)		
Cobalt (Co)		
*Nickel (Ni)	0.30 max.	
Forging (a)		
Start forging at	1900 - 2050°F	
	(1038 - 1213°C)	
Do not forge below	1600°F (871°C)	
Normalizing (b)	Do not normalize	
Annealing (c)		
Temperature	1350 - 1375°F	
	(732 - 746°C)	
Rate of cooling, max. per hour	25°F (14°C)	
Typical annealed hardness, Brinell	217 - 248	
Hardening		
Rate of heating	Slowly	
Preheat temperature	1200°F (649°C)	
Hardening temperature	1525 - 1600°F	
i al donnig tompolatal o	(829 - 871°C)	
Time at temperature, minutes	20 - 45 (j)	
Quenching medium	A (I)	
Tempering		
Tempering temperature	300 - 800°F	
	(149 - 427°C)	
Approx. tempered hardness, Rockwell C	54 - 60	
Wear Resistance	Low to Medium	
Toughness	Medium to High	
Resistance to Softening Effect of		
Elevated Temperature	Medium	
Depth of Hardening	Deep	
Machinability	Low to Medium	
Grindability	Medium	
Distortion in Heat Treating	Lowest	
Safety in Hardening	Highest	
Resistance to Decarburization	Medium to High	

Please refer to pg. 8-58 for notes (a) to (o) incl., explanation of letter 0, A, S, B and W. *Unless otherwise specified, nickel plus copper equal 0.75% max. for all tool steel types.

8-36

AISI D2

D2 is an air-hardening, high carbon, high chromium tool steel with extremely high wear resisting properties. It is a very deep hardening steel and will be practically free from size change after proper treatment. The high percentage of chromium gives it mild corrosion-resisting properties in the hardened condition.

Typical Applications

Blanking Dies, Forming Dies, Coining Dies, Slitting Cutters, Heading Tools, Long Punches, Forming Rolls, Edging Rolls, Master Tools, Beading Rolls, Intricate Punches, Extrusion Dies, Drawing Dies, Lamination Dies, Thread Rolling Dies, Shear Blades, Burnishing Tools, Gauges, Knurls, Wear Parts.

Typical Analysis	Type D2 (UNS T30402)
Carbon (C)	1.40 / 1.60
Manganese (Mn)	0.60 max.
Silicon (Si)	0.60 max.
Tungsten (W)	
Molybdenum (Mo)	0.70 / 1.20
Chromium (Cr)	11.00 / 13.00
Vanadium (V)	1.10 max.
Cobalt (Co)	1.00 max.
*Nickel (Ni)	0.30 max.
Forging (a)	
Start forging at	1850 - 2000°F
	(1010 - 1093°C)
Do not forge below	1700°F (927°C)
Normalizing (b)	Do not normalize
Annealing (c)	
Temperature	1600 - 1650°F
	(871 - 899°C)
Rate of cooling, max. per hour	40°F (22°C)
Typical annealed hardness, Brinell	217 - 255
Hardening	
Rate of heating	Very Slowly
Preheat temperature	1500°F (816°C)
Hardening temperature	1800 - 1875°F (982 - 1024°C)
Time at temperature, minutes	(962 - 1024 C) 15 - 45 (j)
Quenching medium	A (I)
Tempering	
Tempering temperature	400 - 1000°F
	(204 - 538°C)
Approx. tempered hardness, Rockwell C	54 - 61
Wear Resistance	High to Very High
Toughness	Low
Resistance to Softening Effect of	
Elevated Temperature	Medium to High
Depth of Hardening	Deep
Machinability	Low
Grindability	Low
Distortion in Heat Treating	Lowest
Safety in Hardening	Highest
Resistance to Decarburization	Medium

Please refer to pg. 8-58 for notes (a) to (o) incl., explanation of letter 0, A, S, B and W. *Unless otherwise specified, nickel plus copper equal 0.75% max. for all tool steel types.

DC53 is a general purpose, cold work die and mold steel whose strength and toughness approach those of high-speed steels.

Typical Applications

Forming Dies, Thread Rolling Dies, Cold Forging Dies, Gauges, Plastic Molds, Stepped Punch and Press Punching Dies.

Typical Analysis	Type DC53	
Carbon (C)	0.95	
Molybdenum (Mo)	2.00	
Chromium (Cr)	8.00	
Vanadium (V)	0.25	
Cobalt (Co)		
*Nickel (Ni)		
Forging (a) Start forging at Do not forge below	1100°C 900°C	
Normalizing (b)		
Annealing (c) Temperature Rate of cooling, max. per hour Typical annealed hardness, Brinell	830°C - 880°C 40°F (22°C) 255°	
Hardening Rate of heating Preheat temperature Hardening temperature Time at temperature, minutes Quenching medium	Slowly 800°C - 850°C) 1020° C - 1040°C 15 - 45 Air, Gas	
Tempering Tempering temperature 520 - 550 Approx. tempered hardness, Rockwell C 64 - 58		
Wear Resistance High to Very Hi		
Toughness Begintenege to Softening Effect of	High	
Resistance to Softening Effect of	Lligh	
Elevated Temperature	High	
Depth of Hardening Machinability	Through Harden High	
Grindability	High	
Distortion in Heat Treating	Low	
Safety in Hardening	High	
Resistance to Decarburization	High	
	l ligh	

Please refer to pg. 8-58 for notes (a) to (o) incl., explanation of letter 0, A, S, B and W. *Unless otherwise specified, nickel plus copper equal 0.75% max. for all tool steel types.

AISI 01

O1 is an oil-hardening, non-deforming tool steel which can be hardened at relatively low temperatures. Tools and dies made from O1 will have good wearing qualities since the tungsten and higher chromium content gives improved wear resistance over the straight manganese grades.

Typical Applications

Blanking Dies, Bushings, Forming Dies, Master Tools, Forming Rolls, Gauges, Trim Dies.

Typical Analysis	Type O1 (UNS T31501)
Carbon (C)	0.85 / 1.00
Manganese (Mn)	1.00 / 1.40
Silicon (Si)	0.50 max.
Tungsten (W)	0.40 / 0.60
Molybdenum (Mo)	
Chromium (Cr)	0.40 / 0.70
Vanadium (V)	0.30 max.
Cobalt (Co)	
*Nickel (Ni)	0.30 max.
Forging (a) Start forging at	1800 - 1950°F (982 - 1066°C)
Do not forge below	1550°F (843°C)
Normalizing (b)	1600°F (871 °C)
Annealing (c)	
Temperature Rate of cooling, max. per hour Typical annealed hardness, Brinell	1400 - 1450°F (760 - 788°C) 40°F (22°C) 183 - 212
Hardening Rate of heating Preheat temperature Hardening temperature Time at temperature, minutes Quenching medium	Slowly 1200°F (649°C) 1450 - 1500°F (788 - 816°C) 10 - 30 0 (I)
Tempering	
Tempering temperature Approx. tempered hardness, Rockwell C	350 - 500°F (177 - 260°C) 57 - 62
Wear Resistance	Medium
Toughness	Medium
Resistance to Softening Effect of	Wiedidini
Elevated Temperature	Low
Depth of Hardening	Medium
Machinability	High
Grindability	High
Distortion in Heat Treating	Low
Safety in Hardening	Medium to High
Resistance to Decarburization	High

Please refer to pg. 8-58 for notes (a) to (o) incl., explanation of letter 0, A, S, B and W. *Unless otherwise specified, nickel plus copper equal 0.75% max. for all tool steel types.

AISI 06

O6 is an oil-hardening cold work steel which has outstanding machinability resulting from small particles of graphitic carbon uniformly distributed throughout the steel. These particles increase resistance to wear and galling in service. For an oil-hardening steel, 06 holds size well during heat treating.

Typical Applications

Blanking Dies, Piercing Dies, Drawing Dies, Pneumatic Hammers, Forming Dies, Spinning Tools, Punches, Stamps, Gauges, Wear Plates, Cams, Rotary Slitting Cutters.

Typical Analysis	Type O6 (UNS T31506)
Carbon (C)	1.25 / 1.55
Manganese (Mn)	0.30 / 1.10
Silicon (Si)	0.55 / 1.50
Tungsten (W)	0.0071.00
Molybdenum (Mo)	0.20 / 0.30
Chromium (Cr)	0.30 max
*Nickel (Ni)	0.30 max
Forging (a) Start forging at	1800 - 1950°F (982 - 1066°C)
Do not forge below	1500°F (816°C)
Normalizing (b)	1600°F (871 °C)
Annealing (c) Temperature Rate of cooling, max. per hour	1400 - 1450°F (766 - 788°C) 20°F (11°C)
Typical annealed hardness, Brinell	183 - 217
Hardening Rate of heating Preheat Temperature Hardening temperature	Slowly 1450 - 1500°F (788 - 816°C)
Time at temperature, minutes Quenching medium	10 - 30 0 (I)
Tempering Tempering temperature	350 - 600°F (177 - 316°C)
Approx. tempered hardness, Rockwell C Wear Resistance	58 - 63
	Medium Medium
Toughness Resistance to Softening Effect of	weatum
Elevatated Temperature	Low
Depth of Hardening	Medium
Machinability	Highest
Grindability	High
Distortion in Heat Treating	Low
Safety in Hardening	Medium to High
Resistance to Decarburization	High

Please refer to pg. 8-58 for notes (a) to (o) incl., explanation of letter 0, A, S, B and W. *Unless otherwise specified, nickel plus copper equal 0.75% max. for all tool steel types.

AISI L6

L6 is a tough, oil-hardening tool steel possessing a fine-grained structure and desirable shock resistance. L6 is also associated with high strength and good non-deforming characteristics.

Typical Applications

Forming Rolls, Spindles, Punches, Trim Dies, Blanking Dies, Embossing Dies, Forming Dies, and Shear Blades.

Typical Analysis	Type L6 (UNS T61206)
Carbon (C)	0.65 / 0.75
Manganese (Mn)	0.25 / 0.80
Silicon (Si)	0.50 max
Molybdenum (Mo)	0.50 max
Chromium (Cr)	0.60 / 1.20
Vanadium (V)	0.30 max
*Nickel (Ni)	1.25 / 2.00
Forging (a) Start forging at Do not forge below	1800 - 2000°F (982 - 1093°C) 1550°F (843°C)
Normalizing (b)	1600°F (871 °C)
Annealing (c) Temperature Rate of cooling, max. per hour Typical annealed hardness, Brinell	1400 - 1450°F (760 - 788°C) 40°F (22°C) 183-255
Hardening Rate of heating Hardening temperature Time at temperature, minutes Quenching medium	Slowly 1450 - 1550°F (788 - 843°C) 10 - 30 (j) 0 (l)
Tempering Tempering temperature Approx. tempered hardness, Rockwell C	350 - 1000°F (177 - 538°C) 45 - 62
Wear Resistance	Medium
Toughness	Very High
Resistance to Softening Effect of Elevatated Temperature	Low
Depth of Hardening	Medium
Machinability	Medium
Grindability	High
Distortion in Heat Treating	Low
Safety in Hardening	Medium
Resistance to Decarburization	High

Please refer to pg. 8-58 for notes (a) to (o) incl., explanation of letter 0, A, S, B and W. *Unless otherwise specified, nickel plus copper equal 0.75% max. for all tool steel types.

S5 is an oil-hardening silicon-manganese steel of medium carbon content especially adapted for punches, shear blades, chisels, and other shock resisting applications. S5 is therefore applicable where the properties of silicon-manganese steels are desired in combination with well-known advantages of oil-hardening steels. A reduced tendency to distort or crack in heat treatment is accordingly combined with high toughness in S5.

Typical Analysis	Type S5 (UNS T41905)	
Carbon (C)	0.50 / 0.65	
Manganese (Mn)	0.60 / 1.00	
Silicon (Si)	1.75 / 2.25	
Tungsten (W)		
Molybdenum (Mo)	0.20 / 1.35	
Chromium (Cr)	0.35 max	
Vanadium (V)	0.35 max	
Cobalt (Co)		
Forging (a) Start forging at Do not forge below	1850 - 2050°F (1010 - 1121°C) 1600°F (871°C)	
Normalizing (b)	Do not normalize	
Annealing (c) Temperature Rate of cooling, max. per hour	1425 -1475°F (774 - 802°C) 25°F (14°C)	
Typical annealed hardness, Brinell	192-229	
Hardening Rate of heating Preheat Temperature Hardening temperature Time at temperature, minutes Quenching medium	Slowly 1400°F (760°C) 1600 - 1700°F (871 - 927°C) 5 - 20 0 (I)	
Tempering Tempering temperature Approx. tempered hardness, Rockwell C	350 - 800°F (177 - 427°C) 50 - 60	
Wear Resistance	Low to Medium	
Toughness	Highest	
Resistance to Softening Effect of Elevated Temperature	Low	
Depth of Hardening	Medium	
Machinability	Medium to High	
Grindability	Medium to High	
Distortion in Heat Treating	Medium	
Safety in Hardening	High	
Resistance to Decarburization	Low	

Please refer to pg. 8-58 for notes (a) to (o) incl., explanation of letter 0, A, S, B and W. *Unless otherwise specified, nickel plus copper equal 0.75% max. for all tool steel types.

AISI S7 is a general purpose air-hardening tool steel with high impact and shock resistance. It has good resistance to softening at moderately high temperatures. This combination of properties makes it suitable for many hot work and cold work applications. Excellent combination of high strength and toughness. Useful in moderate hot work as well as cold work work tooling. Added size stability when air hardened.

Typical Applications

Bull Riveters, Concrete Breakers (Moll Points), Riveting Dies, Powder Metal Dies, Notching Dies, Dowels, Drills, Drill Plates, Hubs, Plastic Mold Dies, Cold Forming Dies, Blanking Dies, Bending Dies, and Master Hobs.

Typical Analysis	Type S7 (UNS T41907)
Carbon (C)	0.45 / 0.55
Manganese (Mn)	0.20 / 0.80
Silicon (Si)	0.20 / 1.00
Tungsten (W)	
Molybdenum (Mo)	1.30 / 1.80
Chromium (Cr)	3.00 / 3.50
Vanadium (V)	0.30 max
Cobalt (Co)	
Forging (a)	
Start forging at	1950 - 2050°F
	(1066 - 1121°C)
Do not forge below	1700°F (927°C)
Normalizing (b)	Do not normalize
Annealing (C)	
Temperature	1500 - 1550°F
	(816 - 843°C)
Rate of cooling, max. per hour	25°F (14°C)
Typical annealed hardness, Brinell	187-223
Hardening	
Rate of heating	Slowly
Preheat Temperature	1200 - 1300°F
	(649 - 704°C)
Hardening temperature	1700 - 1750°F
Time at temperature minutes	(927 - 954°C) 15 - 45 (j)
Time at temperature, minutes Quenching medium	A or O (I)
	A 01 O (1)
Tempering	100 115005
Tempering temperature	400 - 1150°F
(Do not temper below 400°F) Approx. tempered hardness, Rockwell C	(204 - 621°C) 45 - 57
Wear Resistance	Low to Medium
Toughness	Very High
Resistance to Softening Effect of	Lliab
Elevated Temperature	High Madium ta Daan
Depth of Hardening	Medium to Deep
Machinability Crindability	Medium to High
Grindability Distantion in Uset Treating	Medium to High
Distortion in Heat Treating	A: Lowest /O: Low
Safety in Hardening	A: Highest /O: High
Resistance to Decarburization	Medium

Please refer to pg. 8-58 for notes (a) to (o) incl., explanation of letter 0, A, S, B and W. *Unless otherwise specified, nickel plus copper equal 0.75% max. for all tool steel types.

AISI S7 ESR

S7 ESR tool steel is specifically designed for use in molds and other applications where a highly polished or a very smooth finish is required. The ESR (Electro Slag Remelt) process removes most of the non-metallic inclusions in the steel. S7 ESR double melt's relatively low carbon level, fortified chemistry, ultra-clean, uniform, and homogeneous internal structure make it superior to the other conventionally manufactured shock-resisting tool steels. The following charts show microcleanliness ratings of ESR tool steels by ASTM E45, Method D:

Typical Microcleanliness	Α	В	С	D
Thin	< 0.5	< 0.5	< 0.5	1.0
Heavy	< 0.5	< 0.5	< 0.5	1.0
Maximum Rated				
Microcleanliness	A	В	С	D
Thin	1.5	1.5	2.0	1.5
Heavy	1.0	1.0	1.0	1.0

The quality control of the S7 ESR process assures the exceptional cleanliness throughout by removing most harmful inclusions in the material (such as, oxides, nitrides and sulfides). The ESR steel produced will reflect a mirror like surface condition, subsequently reducing friction giving you easier ejection of parts, the elimination of minute scratches, and other stress-raisers that could lead to premature die failures.

The higher quality steel produced by special melt practices imparts a most important characteristic freedom of inclusions and other imperfections. Other advantages include: cleanliness, stability, improved mechanical properties, structures relatively free from segregation resulting in less cracking, and quality assurance by ultrasonic testing of all ESR material produced.

Typical Analysis	Type S7 ESR	
Carbon (C)	.50	
Manganese (Mn)	.60	
Silicon (Si)	.65	
Molybdenum (Mo)	1.40	
Chromium (Cr)	3.25	
Annealing (C) When properly annealed, this steel has a machinability rating of 95 as compared to a 1% carbon steel rated at 100.		
Tempering		
Tempering	Rockwell C	
As Quenched		
400°F		
500°F56		
600°F55		
700°F54		
800°F53		
900°F52		
1000°F51		
1100°F47		
1200°F		
1" specimen, 3 long were air-hardened from 1725°F.		
Material may become brittle when tempered at less than 400°F.		

Please refer to pg. 8-58 for Hardening information

* Unless otherwise specified, nickel plus copper equal 0.75% max. for all tool steel types.

AISI P20 Prehardened

P20 is a chrome-moly tool steel made specifically to fill the requirements for the machined cavities and forces used in zinc die casting and plastic molding. It is delivered fully quenched and tempered to approximately Brinell 300. Other hardness levels may be obtained through additional heat treatment. P20 composition and structure provide excellent machining and polishing characteristics.

Typical Analysis	Type P20 (UNS T51620)
Carbon (C)	0.35
Manganese (Mn)	0.80
Silicon (Si)	0.50
Tungsten (W)	
Molybdenum (Mo)	0.45
Chromium (Cr)	1.70
Vanadium (V)	
Cobalt (Co)	
Nickel (Ni)	
Forging (a) Start forging at Do not forge below	2000ºF (1093ºC) 1700ºF (927ºC)
Normalizing (b)	Do not normalize
Annealing (c) Temperature Rate of cooling, max. per hour Typical annealed hardness, Brinell	1450-1500°F (788-816°C) 30°F per hour to 1000°F 207 max.
Hardening Rate of heating Preheat temperature Hardening temperature Time at temperature, minutes Quenching medium	Slowly None 1500-1600°F (816-871°C) 60 min. per inch of thick. O (I)
Tempering Tempering temperature Approx. tempered hardness, Rockwell C	300-1200°F (149-649°C) 26-54
Wear Resistance	Low to Medium
Toughness	Very High
Resistance to Softening Effect of Elevated Temperature	High
Depth of Hardening	Medium to Deep
Machinability	Medium
Grindability	Medium
Distortion in Heat Treating	Low
Safety in Hardening	High
Resistance to Decarburization	High

Please refer to pg. 8-58 for notes (a) to (o) incl., explanation of letter 0, A, S, B and W. *Unless otherwise specified, nickel plus copper equal 0.75% max. for all tool steel types.

AISI T420 Stainless ESR

AISI T420 ESR is an air or oil hardening mold steel having superior internal steel cleanliness combined with good resistance to corrosion. It is suitable for mold applications and is capable of providing an excellent polished surface. A special re-melting process called Electro Slag Refining or ESR provides a 420 type steel with the very low inclusion content required by mold makers who polish mold surfaces.

Typical Analysis	Type T420 (UNS S42000)
Carbon (C)	Over 0.15
Manganese (Mn)	1.00 max
Silicon (Si)	1.00 max
Tungsten (W)	0.03 max
Molybdenum (Mo)	0.03 max
Chromium (Cr)	12.00 / 14.00
Vanadium (V)	
Cobalt (Co)	
*Nickel (Ni)	
Forging (a) Start forging at	
Do not forge below	
Normalizing (b)	
Annealing (c) Temperature	1600 - 1650°F (871 - 899°C)
Rate of cooling, max. per hour Typical annealed hardness, Brinell	192 - 241
Hardening Rate of heating Preheat temperature Hardening temperature Time at temperature, minutes	1350 - 1450°F (735 - 788°C) 1850 - 1950°F (1110 - 1066°C)
Quenching medium	A (I)
Tempering Tempering temperature	450 - 750°F (232 - 399°C)
Approx. tempered hardness, Rockwell C	49 - 53
Wear Resistance	Low
Toughness	Medium
Resistance to Softening Effect of Elevated Temperature	Good
Depth of Hardening	Medium
Machinability	Medium
Grindability	Good
Distortion in Heat Treating	Low
Safety in Hardening	High
Resistance to Decarburization	Medium

Please refer to pg. 8-58 for notes (a) to (o) incl., explanation of letter 0, A, S, B and W. *Unless otherwise specified, nickel plus copper equal 0.75% max. for all tool steel types.

AISI W2

W2 is a shallow hardening tool steel. Due to its vanadium content, the grain is superior in toughness and resistance to fatigue compared to straight carbon tool steels thereby making it desirable for many types of impact tools.

Typical Analysis	Type W2 (UNS T27302)
Carbon (C)	0.85 / 1.50
Manganese (Mn)	0.10 / 0.40
Silicon (Si)	0.10 / 0.40
Tungsten (W)	0.15 max
Molybdenum (Mo)	0.10 max
Chromium (Cr)	0.15 max
Vanadium (V)	0.15 / 0.35
Cobalt (Co)	
*Nickel (Ni)	0.20 max
Forging (a)	
Start forging at	1800 - 1950°F
	(982 - 1066°C)
Do not forge below	1500°F (816°C)
Normalizing (b)	1450 - 1700°F (d)
Annealing (c)	
Temperature	1360 - 1450°F(d)
	(738 - 788°C)
Rate of cooling, max. per hour	40°F (22°C)
Typical annealed hardness, Brinell	156 - 201
Hardening	
Rate of heating	Slowly
Preheat temperature	(g)
Hardening temperature	1400 - 1550°F (e)
Time at temperature, minutes	(760 - 843°C) 10 - 30
Time at temperature, minutes Quenching medium	B or W (I)
Tempering Tempering temperature	350 - 650°F
	(177 - 343°C)
Approx. tempered hardness, Rockwell C	50 - 64
Wear Resistance	Low to Medium
Toughness	High (I)
Resistance to Softening Effect of	
Elevated Temperature	Low
Depth of Hardening	Shallow
Machinability	Highest
Grindability	Highest
Distortion in Heat Treating	High
Safety in Hardening	Low to Medium
Resistance to Decarburization	Highest

Please refer to pg. 8-58 for notes (a) to (o) incl., explanation of letter 0, A, S, B and W. *Unless otherwise specified, nickel plus copper equal 0.75% max. for all tool steel types.

AISI H13

H13 is a 5% chromium hot work tool steel designed for applications that require extreme toughness combined with good red-hardness. H13 will allow an extra margin of safety in tools subject to heavy hammer blows, and those containing deep recesses or sharp corners. Although H13 was designed as a hot work steel, it has solved many cold work applications where extra toughness could be gained with some sacrifice of wear resistance.

Typical Applications

Aluminum Extrusion Dies, Die Casting Dies, Heavy Duty Compression Tools, Forming Punches, Hot Forging Dies, Shear Blades, Plastic Mold Dies, and Bolt Dies.

Typical Analysis	Type H13 (UNS T20813)
Carbon (C)	0.32 / 0.45
Manganese (Mn)	0.20 / 0.50
Silicon (Si)	0.80 / 1.20
Tungsten (W)	
Molybdenum (Mo)	1.10 / 1.75
Chromium (Cr)	4.75 / 5.50
Vanadium (V)	0.80 / 1.20
Cobalt (Co)	
*Nickel (Ni)	0.30 max
Forging (a) Start forging at Do not forge below	1950 - 2100°F (1066 - 1149°C) 1650°F (899°C)
Normalizing (b)	Do not normalize
Annealing (c) Temperature Rate of cooling, max. per hour Typical annealed hardness, Brinell	1550 - 1650°F (843 - 899°C) 40°F (22°C) 192 - 229
Hardening Rate of heating Preheat temperature Hardening temperature Time at temperature, minutes Quenching medium	Moderately from preheat 1500°F (816°C) 1825 - 1900°F (996 - 1038°C) 15 - 40 (j) A (I)
Tempering Tempering temperature	1000-1200°F (k) (538-649°C)
Approx. tempered hardness, Rockwell C Wear Resistance	38-53
	Medium
Toughness Resistance to Softening Effect of	Very High
Elevated Temperature	High
Depth of Hardening	Deep
Machinability	Medium to High
Grindability	Medium to High
Distortion in Heat Treating	Very Low
Safety in Hardening	Highest

Please refer to pg. 8-58 for notes (a) to (o) incl., explanation of letter 0, A, S, B and W. *Unless otherwise specified, nickel plus copper equal 0.75% max. for all tool steel types.

Viscount 44®

Prehardened AISI Type H13 Typical Analysis

Viscount 44[®] is fully heat treated H13 hot work steel with carefully controlled and evenly dispersed sulphide additives. It is the same analysis type as Latrobe's popular VDC, but the free-machining sulphides improve the machinability to the point where die work at a hardness of Rockwell C 42-46 is practical. It is thus possible to bypass the risk of heat treatment involved in tool building.

Prehardening gives Viscount 44[®] a tremendous advantage when used for hot work dies because of the constant danger of size change or distortion during heat treatment. The product also eliminates costly finishing operations after heat treatment.

Using prehardened Viscount 44[®] for extrusion tools makes it possible to produce dies, backers, bolsters, dummy blocks, etc. in a few hours, allowing extremely short delivery schedules to be met. In addition, the use of prehardened Viscount 44[®] for extrusion dies ensures clean metal at the bearing surfaces free from any possible decarburization, carburization, scale, sub-scale or other deleterious conditions sometimes encountered when finished dies are heat treated.

Field tests show that Viscount 44[®]'s performance in aluminum, magnesium, and zinc die casting dies is at best the equivalent of regular H13. Particular examples have shown that over 100,000 shots can be obtained in large dies and over 200,000 shots in smaller dies.

Field reports also indicate excellent performance with Viscount 44[®] on forging dies, plastic molds, extrusion tools, and other hot work tools.

Typical Analysis	Viscount 44®
Carbon (C)	0.40
Manganese (Mn)	0.80
Silicon (Si)	1.00
Tungsten (W)	
Molybdenum (Mo)	1.35
Chromium (Cr)	5.25
Vanadium (V)	1.00
Cobalt (Co)	
Tempering	
Approx. tempered hardness, Rockwell C	42 - 46
Wear Resistance	Medium
Toughness	Very High
Resistance to Softening Effect of	
Elevated Temperature	High
Depth of Hardening	
Machinability	Low
Grindability	Medium
Distortion in Heat Treating	
Safety in Hardening	
Resistance to Decarburization	

DRM1

Hot and Warm Forging Die Steel

DRM1 tool steel features high hardness and high tough Matrix type high speed tool steel vastly surpasses hot work die steels. DRM1 improves hot and warm die life by its higher toughness than conventional grade.

Typical Applications

Used for hot and warm forging dies and punches.

Typical Analysis	Type DRM1
Carbon (C)	0.60
Manganese (Mn)	0.50
Silicon (Si)	0.20
Tungsten (W)	3.00
Molybdenum (Mo)	1.00
Chromium (Cr)	4.20
Vanadium (V)	1.50
Cobalt (Co)	2.00
Annealing (c) Temperature Slow cooling	1472 - 1616°F (800 - 880°C)
Typical annealed hardness, Brinell	≤ 235HB
Hardening Rate of heating Preheat temperature Hardening temperature Time at temperature, minutes Quenching	Moderately from preheat 1742°F (950°C) 2012 - 2084°F (1100 - 1140°C) 20-30 per inch of thickness for material under 4" 10-20 per inch of thickness for material 4" and over OQ-Oil Quenching, GC-Gas Quenching in vacuum furnace, Salt Bath, Similar to conventional high speed steels
Tempering Tempering temperature	Minimal Double Temper AC-Air Cooling, 1022-1148°F (550-620°C)
Approx. tempered hardness, Rockwell C	56-58 HRC
Wear Resistance	Good
Toughness	Very High
Resistance to Softening Effect of	
Elevated Temperature	High
Machinability	Better and faster than
	conventional high speed steels
Grindability	Better and faster than
	conventional high speed steels

Alloys & Tool Steel

Warm and Cold Forging Die Steel

DRM2 is a matrix type high speed tool steel available for warm and cold forging tools where critical performance is required. DRM2 prolongs service life due to its higher hardness and toughness than those of conventional grades.

Typical Applications

Used for warm and cold forging dies and punches.

Typical Analysis	Type DRM2
Carbon (C)	0.70
Tungsten (W)	1.00
Molybdenum (Mo)	2.40
Chromium (Cr)	5.50
Vanadium (V)	1.00
Annealing (c) Temperature Slow cooling Typical annealed hardness, Brinell	1472 - 1616°F (800 - 880°C) ≤ 235HB
	≤ 233HB
Hardening Rate of heating Preheat temperature Hardening temperature Time at temperature, minutes Quenching	Moderately from preheat 1742°F (950°C) 1922 - 2012°F (1050 - 1100°C) 20-30 per inch of thickness for material under 4" 10-20 per inch of thickness for material 4" and over OQ-Oil Quenching, GC-Gas Quenching in vacuum furnace, SaltBath, Similar to conventional high speed steels
Tempering	Minimal Double Temper
Tempering temperature	AC-Air Cooling, 1022 - 1148°F (550 - 620°C)
Approx. tempered hardness, Rockwell C	58 - 62 HRC
Wear Resistance	Good
Toughness	High
Resistance to Softening Effect of Elevated Temperature	High
Machinability	Better and faster than
Crindohility	conventional high speed steels Better and faster than
Grindability	
	conventional high speed steels

DRM3 Cold Forging Die Steel

Conventional grade MH88 has been improved to DRM3. High hardness and tough DRM3 with excellent hardenability is suitable for high precision cold working tools.

Typical Applications

Used for hot and warm forging dies and punches.

Typical Analysis	Type DRM3
Carbon (C)	0.80
Manganese (Mn)	0.35
Silicon (Si)	0.70
Tungsten (W)	0.95
Molybdenum (Mo)	4.35
Chromium (Cr)	5.50
Vanadium (V)	1.20
Annealing (c) Temperature Slow cooling	1472 - 1616°F (800 - 880°C)
Typical annealed hardness, Brinell	≤ 235HB
Hardening Rate of heating Preheat Temperature Hardening temperature Time at temperature, minutes Quenching	Moderately from preheat 1742°F (950°C) 2012 - 2084°F (1100 - 1140°C) 30 - 90 OQ-Oil Quenching, GC-Gas Quenching in vacuum furnace, Salt Bath, Similar to conventional high speed steels
Tempering Tempering temperature	Minimal Double Temper AC-Air Cooling, 1022-1148°F (550-620°C)
Approx. tempered hardness, Rockwell C	()
Wear Resistance	Very High
Toughness	Good
Resistance to Softening Effect of	
Elevated Temperature	High
Machinability	Better and faster than conventional high speed steels
Grindability	Better and faster than
Cintability	conventional high speed steels
	v .

M2 is a tungsten-molybdenum high-speed steel and is a popular grade for general purpose cutting and non-cutting applications. It has a wider heat-treating range than most of the molybdenum high-speed steels, coupled with a resistance to decarburization that is characteristic of tungsten types. M2 offers an excellent combination of red hardness, toughness, and wear resistance. M2 is available in a wide variety of shapes and sizes. As with all Alro Specialty Metal products, M2 is subjected to a variety of rigid quality control tests and inspection to ensure quality, uniformity, and reliability.

Typical Applications

Broaches, Boring Tools, Chasers, Cold Forming Rolls, Cold Heading Inserts, Drills, End Mills, Form Tools, Hobs, Lathe and Planer Tools, Punches, Milling Cutters, Taps, Reamers, and Saws.

Typical Analysis	Type M2 (UNS T11302)
Carbon (C)	0.78 / 0.88
Manganese (Mn)	0.15 / 0.88
Silicon (Si)	0.20 / 0.45
Tungsten (W)	5.50 / 6.75
Molybdenum (Mo)	4.50 / 5.50
Chromium (Cr)	3.75 / 4.50
Vanadium (V)	1.75 / 2.20
Nickel (Ni)	0.30 max
Forging (a) Start forging at Do not forge below	1900 - 2100°F (1038 - 1149°C) 1700°F (927°C)
Normalizing (b)	Do not normalize
Annealing (c) Temperature Rate of cooling, max. per hour Typical annealed hardness, Brinell	1600 - 1650°F (871 - 899°C) 40°F (22°C) 212 - 241
Hardening Rate of heating Preheat Temperature Hardening temperature Time at temperature, minutes	Rapidly from preheat 1350-1550°F (732-843°C) 2175-2250°F (h) (1191-1232°C) 2-5
Quenching medium	O, A, or S (I)
Tempering Tempering temperature	1000-1100°F (538-593°C)
Approx. tempered hardness, Rockwell C	60-65
Wear Resistance	Very High
Toughness Registered to Softening Effect of	Low
Resistance to Softening Effect of Elevated Temperature	Very High
Depth of Hardening	Deep
Machinability	Medium
Grindability	Low
Distortion in Heat Treating	A or S: Low/O: Medium
Safety in Hardening	Medium
Resistance to Decarburization	High
	5

M3 was developed after extensive studies of the effect of increased carbon and vanadium contents on the intermediate molybdenum-tungsten high-speed steels. The analysis was tried and proven on practically all high-speed steel applications. M3 offers the unusual combination of extremely high-edge strength at high hardness levels. With few exceptions, best life is accomplished with a minimum hardness of 65.5 Rockwell C. Experience indicates that the chemical balance achieved in M3 results in optimum combination of cutting ability, abrasion resistance, edge strength, red hardness, and long service life. M3 is more readily machined and offers less grinding resistance than higher vanadium types.

Typical Applications

Drills, Taps, End Mills, Reamers, Counterbores, Broaches, Hobs, Form Tools, Lathe and Planer Tools, Checking Tools, Milling Cutters, Slitting Saws, Punches, Drawing Dies, and Wood Working Knives.

Typical Analysis	Type M3 (UNS T11313)
Carbon (C)	1.00 - 1.10
Manganese (Mn)	0.15 - 0.40
Silicon (Si)	0.20 - 0.45
Tungsten (W)	5.00 - 6.75
Molybdenum (Mo)	4.75 - 6.50
Chromium (Cr)	3.75 - 4.50
Vanadium (V)	2.25 - 2.75
Nickel (Ni)	0.30 max
Forging (a) Start forging at Do not forge below	1900 - 2100°F (1038 - 1149°C) 1700°F (927°C)
Normalizing (b)	Do not normalize
Annealing (c) Temperature Rate of cooling, max. per hour Typical annealed hardness, Brinell	1600 - 1650°F (871 - 899°C) 40°F (22°C) 223 - 255
Hardening Rate of heating Preheat Temperature Hardening temperature Time at temperature, minutes Quenching medium	Rapidly from preheat 1350 - 1550°F (732-843°C) 2200 - 2250°F (h) (1191 - 1232°C) 2 - 5 O, A, or S (I)
Tempering Tempering temperature Approx. tempered hardness, Rockwell C	1000-1100°F (538-593°C) 61 - 66
Wear Resistance	Highest
Toughness	Low
Resistance to Softening Effect of Elevated Temperature	Vory High
•	Very High
Depth of Hardening Machinability	Deep Medium
Grindability	Very Low
Distortion in Heat Treating	A or S: Low/O: Medium
Safety in Hardening	Medium
Resistance to Decarburization	High
	i iigii

AISI M4 (PM)

M4 PM, a member of the molybdenum-tungsten family of high-speed steels, is a special purpose grade which utilizes its higher carbon and vanadium contents to develop excellent abrasion resistance. Produced conventionally, M4 is difficult to machine in the annealed condition and grind in the hardened condition. M4 PM is produced by the powder metallurgy process and allows an addition of .06/.08 sulfur which provides a uniform dispersion of small sulfides throughout the structure and enhances machinability. Coupled with finer carbides and structural uniformity, better grindability is also achieved. These factors, along with increased toughness, are ideally suited for heavy-duty cold-work applications.

Typical Applications

Blades, Broaches, Chasers, Die Inserts, Form Tools, Lathe and Planer Tools, Milling Cutters, Punches, Reamers, Slitter Knives, Spade Drills, and Taps.

Typical Analysis Ty	/pe M4 PM (UNS T11304)
Carbon (C)	1.30
Manganese (Mn)	0.30
Silicon (Si)	0.40
Tungsten (W)	5.50
Molybdenum (Mo)	4.50
Chromium (Cr)	4.50
Vanadium (V)	4.00
Sulphur (S)	0.07
Forging (a) Start forging at Do not forge below	
Annealing (c) Temperature	1550 - 1600°F (843 - 871°C)
Rate of cooling, max. per hour Typical annealed hardness, Brinell	
Hardening Rate of heating Preheat Temperature Hardening temperature Time at temperature, minutes Quenching medium	1450 - 1550°F (788 - 843°C) 2150 - 2250°F (h) (1176 - 1232°C) 10 - 30 O (l)
Tempering Tempering temperature	1000 - 1100°F (538 - 593°C)
Approx. tempered hardness, Rockwell C	62 - 66
Wear Resistance	Highest
Toughness	Low
Resistance to Softening Effect of	
Elevated Temperature	Very High
Depth of Hardening	Deep
Machinability	Medium
Grindability	High
Distortion in Heat Treating	Low
Safety in Hardening	Medium
Resistance to Decarburization	Medium

AISI M42

M42 is a molybdenum-cobalt high-speed steel capable of being hardened to 70 Rockwell C. The carbon content is higher than in most high-speed steels, and with this balanced composition, contributes to wear resistance and hot hardness as well as the high hardness capability. M42 exhibits good grindability and relatively good toughness at high hardness levels. M42 is being used for the machining of heat treated materials (high hardness) and high temperature alloys.

Typical Applications

Broaches, Circular and Dovetail Form Tools, Drills, End Mills, Lathe Tools, Milling Cutters, Punches, Reamers, Slitting Saws, and Twist Drills.

Alloys & Tool Steel

Typical Analysis	Type M42 (UNS T11342)
Carbon (C)	1.05 - 1.15
Manganese (Mn)	0.15 - 0.40
Silicon (Si)	0.15 - 0.65
Tungsten (W)	1.15 - 1.85
Molybdenum (Mo)	9.00 - 10.00
Chromium (Cr)	3.50 - 4.25
Vanadium (V)	0.95 - 1.35
Cobalt (Co)	7.75 - 8.75
Nickel (Ni)	0.30 max
Forging (a) Start forging at Do not forge below	1900 - 2100°F (1038 - 1149°C) 1700°F (927°C)
Annealing (c) Temperature	1600 - 1650°F (871 - 899°C)
Rate of cooling, max. per hour Typical annealed hardness, Brinell	40°F (22°C) 235 - 269
Hardening Rate of heating Preheat Temperature Hardening temperature	Rapidly from preheat 1350 - 1550°F (733 - 843°C) 2125 - 2175°F (h)(o)
Time at temperature, minutes Quenching medium	(1163 - 1191°C) 2 - 5 O, A, or S (I)
Tempering Tempering temperature	950-1100°F (510-593°C)
Approx. tempered hardness, Rockwell C	65-70
Wear Resistance	Very High to Highest
Toughness	Low
Resistance to Softening Effect of	
Elevated Temperature	Highest
Depth of Hardening	Deep
Machinability	Medium
Grindability	Low
Distortion in Heat Treating	A or S: Low/O: Medium
Safety in Hardening	Low to Medium
Resistance to Decarburization	Low

AISI T15 (PM)

T15 PM is a tungsten high-speed steel designed for use in machining operations requiring heavy cuts, high speeds and feeds. Its primary use is in applications requiring the machining of high-hardness heat-treated materials such as high temperature alloys. The high carbon, vanadium, and cobalt contents contribute to good wear resistance, hot hardness and good hardness capabilities. T15 PM is produced by the powder metallurgy process which has resulted in improved quality from the standpoint of structural uniformity, response to heat treatment and grindability. These factors, along with increased toughness, are increased usage in the industry because of its recognized superior cutting ability.

Typical Applications

Broaches, Chasers, Form Tools, Heavy Duty Cutting Tools, High Production Blades, Milling Cutters, Reamers, and Taps.

Typical Analysis	Type T15 PM (UNS T12015)
Carbon (C)	1.55
Manganese (Mn)	0.30
Silicon (Si)	0.30
Tungsten (W)	12.25
Molybdenum (Mo)	
Chromium (Cr)	4.00
Vanadium (V)	5.00
Cobalt (Co)	5.00
Forging (a) Start forging at Do not forge below	
Annealing (c) Temperature	1600 - 1650°F (871 - 899°C)
Rate of cooling, max. per hour Typical annealed hardness, Brinell	
Hardening Rate of heating Preheat Temperature Hardening temperature Time at temperature, minutes	1450 - 1500°F (788 - 816°C) 2175 - 2225°F (h)(o) (1190 - 1218°C)
Quenching medium	
Tempering Tempering temperature Approx. tempered hardness,	1000 - 1100°F (538 - 593°C) 66 - 68
Rockwell C	
Wear Resistance	Highest
Toughness	Low
Resistance to Softening Effect of	
Elevated Temperature	Very High
Depth of Hardening	Deep
Machinability	Medium
Grindability	High
Distortion in Heat Treating	Medium
Safety in Hardening	Medium
Resistance to Decarburization	Medium

Heat Treating Notes

- (a) The temperature at which to start heat treating is given as a range, the higher side of which should be used for large sections and heavy or rapid reductions, and the lower side for smaller sections and lighter reduction. As the alloy content of steel increases, the time of soaking at forging temperature increases proportionately. Likewise, as the alloy content increases, it becomes necessary to cool slowly from the maximum heating temperature. With very high alloy steels, such as high-speed steels and air- hardening steels, this slow cooling is imperative in order to prevent cracking and to leave the steel in semi-soft condition. Either furnace cooling or burying in an insulating medium, such as lime, mica, or silocel is satisfactory.
- (b) The length of time the steel is held after being uniformly heated through at the normalizing temperature varies from about 15 minutes for a small section to about one hour for large sizes. Cooling from the normalizing temperature is done in still air. The purpose of normalizing after forging is to refine the grain structure and to produce a uniform structure throughout the forging. Normalizing should not be confused with low temperature [about 1200°F (649°C)] annealing used for the relief of residual stresses resulting from heavy machining, bending, and forming.
- (c) The annealing temperature is given as a range, the upper limit of which should be used for large sections and the lower limit for smaller sections. The length of time the steel is held after being uniformly heated through at the annealing temperature varies from about one hour for light sections and small furnace charges of carbon or low alloy tool steel to about four hours for heavy sections and large furnace charges of high alloy steel.
- (d) Normalizing, annealing, and hardening temperatures of carbon tool steels are given as ranges as they vary with carbon content. The following temperatures are suggested:

Normalizing

0.60 to 0.75% C: 1500°F (816°C) 0.75 to 0.90% C: 1450°F (788°C) 0.90 to 1.10% C: 1600°F (871°C) 1.10 to 1.40% C: 1600 to 1700°F (871 to 927°C) Annealing 0.60 to 0.90% C: 1360 to 1400°F (738 to 760°C) 0.90 to 1.40% C: 1400 to 1450°F (760 to 788°C)

(e) Varies with carbon content as follows:

0.60-0.80%	C: 1450-1550°F (788 to 843°C)
0.85-1.05%	C: 1425-1550°F (774 to 843°C)
1.10-1.40%	C: 1400-1525°F (760 to 829°C)

- (f) Toughness decreases with increasing carbon content and depth of hardening.
- (g) For large tools and tools having intricate sections, preheating at 1050-1200°F (566-649°C) is recommended.
- (h) When high temperature heating is carried out in a salt bath, the range of temperatures should be about 25°F (14°C) lower than that shown.
- (j) Times shown apply to open furnace heat treatment. For pack hardening a common rule is to heat for 1/2 hour per inch (25.4 mm) of cross section of the pack.
- (k) Double tempering suggested for not less than one hour at temperature each temper.
- (I) O: Oil quench
 - A: Air Cool
 - S: Salt bath quench
 - B: Brine quench
 - W: Water quench
- (m)Triple tempering suggested for not less than one hour at temperature each temper.
- (n) When high carbon material is involved, lowering of the hardening temperature an additional 25°F (14°C) is suggested. This is in addition to the 25°F (14°C) reduction involving salt bath hardening.
- (o) Available in two silicon contents, nominally 0.33% and 0.55%. When 0.55% silicon is used, the maximum suggested hardening temperature is 2150°F (1177°C).

Tool Wrap

Tool Wrap is a revolutionary new approach to the heat treatment process. Here's how it works: wrap your parts in our special Tool Wrap as you would a package or a sandwich because Tool Wrap can be wrinkled, folded or cut with scissors (.002 thick T321 Stainless). Then place in your furnace and air cool as usual with the Tool Wrap on the material. Try Tool Wrap on all air hardening grades and hot work steels.

Consider the following advantages of Tool Wrap:

- ✓ No costly atmosphere or special controls needed.
- \checkmark No time consuming Ni chrome box packing.
- ✓ Scale free heat treating.
- ✓ Hardened parts remain scale free, minimizing grinding.

Grade Availability		
Grade	Thickness	Maximum Temperature
321 Stainless	.002"	2000°F (1093°C)
309 Stainless	.002"	2240°F (1093°C)

Tool Wrap edges are extremely sharp, gloves should always be worn when working with Tool Wrap.

Tool Steel Flats and Squares (DCF)

	ize :hes)	Weight (lbs./foot)		Size (inches)	Weight (Ibs./foot)		Size (inches)	Weight (lbs./foot)
3/8 x	1/2	0.785	1/2	2 x 1	1.924		5/8 x 5/8	1.553
	3/4	1.126		1-1/8	2.148		3/4	1.829
	1	1.466		1-1/4	2.371		7/8	2.106
	1-1/4	1.806		1-3/8	2.594		1	2.382
	1-3/8	1.977		1-1/2	2.818		1-1/8	2.659
	1-1/2	2.147		1-3/4	3.264		1-1/4	2.935
	1-3/4	2.487		1-7/8	3.488		1-3/8	3.212
	2	2.827		2	3.711		1-1/2	3.488
	2-1/4	3.168		2-1/4	4.158		1-3/4	4.041
	2-1/2	3.508		2-1/2	4.604		2	4.594
	2-3/4	3.848		2-3/4	5.051		2-1/4	5.148
	3	4.189		3	5.498		2-1/2	5.701
	3-1/2	4.869		3-1/4	5.944		2-3/4	6.254
	3-3/4	5.210		3-1/2	6.391		3	6.807
	4	5.550		4	7.284		3-1/4	7.360
	4-1/2	6.231		4-1/2	8.178		3-1/2	7.913
	5	6.911		5	9.071		4	9.019
	6	8.272		5-1/2	9.964		4-1/2	10.125
	6-1/2	8.953		6	10.858		5	11.231
	7	9.634		6-1/2	11.751		5-1/2	12.337
	8	10.995		7	12.644		6	13.443
	9	12.356		8	14.431		6-1/2	14.549
	10	13.718		9	16.218		7	15.655
	12	18.691		10	18.004		8	17.867
1/2 x	1/2	1.031		12	23.849		9	20.079
	5/8	1.254		14	27.783		10	22.291
	3/4	1.478		16	31.717		12	29.006
	7/8	1.701				•		

Tool Steel Flats and Squares (DCF)

	Size iches)	Weight (Ibs./foot)		Size nches)	Weight (lbs./foot)	Size (inches)	Weight (lbs./foot)
3/4 x	3/4	2.181	7/8 x	7	21.676	1-1/4 x 1-1/4	5.758
	7/8	2.511		8	24.739	1-1/2	6.843
	1	2.841		9	27.802	1-3/4	7.927
	1-1/8	3.170		10	30.865	2	9.012
	1-1/4	3.500		12	39.321	2-1/4	10.097
	1-3/8	3.830	1 x	1	3.757	2-1/2	11.182
	1-1/2	4.159		1-1/4	4.629	2-3/4	12.267
	1-3/4	4.819		1-3/8	5.065	3	13.351
	2	5.478		1-1/2	5.501	3-1/2	15.521
	2-1/4	6.137		1-3/4	6.373	4	17.690
	2-1/2	6.797		2	7.245	4-1/2	19.860
	2-3/4	7.456		2-1/4	8.117	5	22.030
	3	8.116		2-1/2	8.989	5-1/2	24.199
	3-1/4	8.775		2-3/4	9.861	6	26.369
	3-1/2	9.434		3	10.733	7	30.708
	4	10.753		3-1/2	12.478	8	35.047
	4-1/2	12.072		4	14.222	9	39.386
	5	13.390		4-1/2	15.966	10	43.725
	5-1/2	14.709		5	17.710	12	54.794
	6	16.028		5-1/2	19.454	16	72.872
	6-1/2	17.347		6	21.198	20	90.949
	7	18.665		6-1/2	22.942	24	109.027
	8	21.303		7	24.687	1-3/8 x 1-3/8	6.918
	9	23.940		8	28.175	1-1/2	7.514
	10	26.578		9	31.663	1-3/4	8.705
	12	34.164		10	35.151	2	9.896
	14	39.799		12	44.479	2-1/4	11.087
	16	45.435		14	51.816	2-1/2	12.278
	20	56.706		16	59.153	2-3/4	13.469
7/8 x	7/8	2.916	1-1/8	x 1-1/8	4.704	3	14.660
	1	3.299		1-1/4	5.193	3-1/2	17.043
	1-1/8	3.682		1-1/2	6.172	4	19.425
	1-1/4	4.064		1-3/4	7.150	4-1/2	21.807
	1-3/8	4.447		2	8.129	5	24.189
	1-1/2	4.830		2-1/4	9.107	5-1/2	26.572
	1-3/4	5.596		2-1/2	10.086	6	28.954
	2	6.362		2-3/4	11.064	8	38.483
	2-1/4	7.127		3	12.042	9	43.247
	2-1/2	7.893		3-1/2	13.999	10	48.012
	2-3/4	8.659		4	15.956	12	59.951
	3	9.424		4-1/2	17.913	1-1/2x 1-1/2	8.184
	3-1/4	10.190		5	19.870	1-3/4	9.482
	3-1/2	10.956	1-1/8	-	21.827	2	10.779
	4	12.487	1-1/0	x 5-1/2 6	21.027	_ 2-1/4	12.077
	4-1/2	14.019		8	31.611	2-1/2	13.374
	5	15.550		o 10	39.438	2-3/4	14.672
	5-1/2	17.082		10	39.438 49.636	3	15.969
	6	18.613		12	49.000	v	

DCF Thickness and Width Oversize Ranges :

Width (based on thickness)

Thru < 4" thick	+0.035 to +0.077 oversize
Rough Milled 4" thru < 5"	+0.062 to +0.124 oversize
Rough Milled 5" and over	+0.062 to +0.124 oversize

Thickness	
Thru < 4" thick	+0.015 to +0.035 oversize
Rough Milled 4" thru < 5"	+0.062 to +0.125 oversize
Rough Milled 5" and over	+0.125 to +0.250 oversize

Note: Actual weight may vary because of oversize tolerance. Sizes not listed above can be cut from plate. For Powdered Metal add 3% for weight.

Tool Steel Flats and Squares (DCF)

Size (inches)	Weight (lbs./foot)	Size (inches)	Weight (lbs./foot)	Size (inches)	Weight (lbs./foot)
1-1/2x 3-1/2	18.564	2 x 12	85.739	2-3/4x 10	95.166
4	21.159	16	114.027	12	116.684
4-1/2	23.754	20	142.314	16	155.181
5	26.349	24	170.601	20	193.678
5-1/2	28.944	2-1/4x 2-1/4	18.016	24	232.175
6	31.539	2-1/2	19.952	3 x 3	31.677
7	36.729	2-3/4	21.887	3-1/2	36.824
8	41.919	3	23.823	4	41.971
9	47.109	3-1/2	27.694	4-1/2	47.119
10	52.298	4	31.565	5	52.266
12	65.109	4-1/2	35.436	5-1/2	57.413
16	86.590	5	39.308	6	62.561
20	108.071	5-1/2	43.179	7	72.855
24	129.552	6	47.050	8	83.150
1-3/4x 1-3/4	11.036	7	54.792	9	93.445
2	12.546	8	62.534	10	103.739
2-1/4	14.057	9	70.277	12	127.000
2-1/2	15.567	10	78.019	16	168.900
2-3/4	17.077	12	96.054	20	210.800
3	18.587	2-1/2x 2-1/2	22.144	3-1/2x 3-1/2	42.911
3-1/2	21.608	2-3/4	24.293	4	48.909
4	24.628	3	26.441	4-1/2	54.907
4-1/2	27.648	3-1/2	30.737	5	60.905
5	30.669	4	35.034	5-1/2	66.903
5-1/2	33.689	4-1/2	39.331	6	72.901
6	36.709	5	43.627	7	84.898
7	42.750	5-1/2	47.924	8	96.894
8	48.791	6	52.220	9	108.890
9	54.831	7	60.813	10	120.887
10	60.872	8	69.406	12	147.630
12	75.424	9	77.999	16	196.336
2 x 2	14.314	10	86.592	20	245.043
2-1/4	16.036	2-1/2x 12	106.369	4 x 4	55.846
2-1/2	17.759	16	141.463	4-1/2	62.695
2-3/4	19.482	20	176.557	5	69.544
3	21.205	24	211.651	5-1/2	76.393
3-1/2	24.651	2-3/4x 2-3/4	26.698	6	83.242
4	28.097	2-3/4 2-3/4	20.090	7	96.940
4-1/2	31.542	3-1/2	33.781	8	110.638
5	34.988	4	38.503	9	124.336
5-1/2	38.434	4-1/2	43.225	10	138.034
6	41.880	5	47.947	12	168.260
7	48.771	5-1/2	52.669	16	223.773
8	55.662	6	57.390	20	279.286
9	62.554	7	66.834		-
10	69.445	8	76.278		
		9	85.722		

DCF Thickness and Width Oversize Ranges :

Width (based on thickness) Thru < 4" thick +0.035 to +0.077 oversize Rough Milled 4" thru < 5" +0.062 to +0.124 oversize

Thickness

Thru < 4" thick +0.015 to +0.035 oversize Rough Milled 4" thru < 5" +0.062 to +0.125 oversize Rough Milled 5" and over +0.062 to +0.124 oversize Rough Milled 5" and over +0.125 to +0.250 oversize

Note: Actual weight may vary because of oversize tolerance. Sizes not listed above can be cut from plate. For Powdered Metal add 3% for weight.

alro.com

Tool Steel Flats and Squares (DCF)

Size (inches)	Weight (Ibs./foot)
4-1/2 x 4-1/2	72.041
5	79.831
6	95.411
8	126.571
10	157.730

-	ize ches)	Weight (lbs./foot)		
5 x	5	88.550		
	5-1/2	97.191		
	6	105.832		
	7	123.113		
	8	140.394		
	10	174.957		
	12	209.520		
5-1/2x	5-1/2	106.761		
	6	116.252		
	8	154.218		
	10	192.184		

	Size (inches)	Weight (Ibs./foot)
6 x	6	126.673
	7	147.357
	8	168.042
	10	209.411
	12	250.781

* 10" thick plate is available in some grades. Please inquire.

DCF Thickness and Width Oversize Ranges :

Width (based on thickness)					
Thru < 4" thick	+0.035 to +0.077 oversize				
Rough Milled 4" thru < 5"	+0.062 to +0.124 oversize				
Rough Milled 5" and over	+0.062 to +0.124 oversize				

Thickness	
Thru < 4" thick	+0.015 to +0.035 oversize
Rough Milled 4" thru < 5"	+0.062 to +0.125 oversize
Rough Milled 5" and over	+0.125 to +0.250 oversize

Note: Actual weight may vary because of oversize tolerance. Sizes not listed above can be cut from plate. For Powdered Metal add 3% for weight.

Carbon and Alloy Plate Tolerances

Tol	Tolerance Over Specified Thickness for Widths Given (inches)								
Specified Thickness (inches)	Up thru 48"	>48" up to 60"	>60" up to 72"	>72" up to 84"	>84" up to 96"	>96" up to 108"	>108" up to 120"	>120" up to 132"	
Up thru 1/4	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	
>1/4 to 5/16	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.04	
5/16 to 3/8	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.04	
3/8 to 7/16	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	
7/16 to 1/2	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	
1/2 to 5/8	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	
5/8 to 3/4	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04	
3/4 to 1	0.03	0.03	0.03	0.03	0.04	0.04	0.05	0.05	
1 to 2	0.06	0.06	0.06	0.06	0.06	0.07	0.08	0.10	
2 to 3	0.09	0.09	0.09	0.10	0.10	0.11	0.12	0.13	
3 to 4	0.11	0.11	0.11	0.11	0.11	0.13	0.14	0.14	
4 to 6	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	
6 to 10	0.23	0.24	0.24	0.24	0.24	0.24	0.24	0.24	
10 to 12	0.29	0.29	0.33	0.33	0.33	0.33	0.33	0.33	
12 to 15	0.29	0.29	0.35	0.35	0.35	0.35	0.35	0.35	

Permissible variations in thickness for rectangular carbon, high strength, low alloy and alloy-steel plates, when ordered to thickness.

Note1: Permissible variation under specificed thickness - 0.01"

Note²: Thickness to be measured at 3/8" to 3/4" from longitudinal edge.

Note³: For thickness measured at any location other than that specified in Note², the permissible maximum over tolerance shall be increased by 75%, rounded to the nearest 0.01".

Alloys & Tool Steel

Tool Steel Rounds (DCF)

Diameter (inches)	Weight (lbs./foot)	Diameter (inches)	Weight (lbs./foot)	Diameter (inches)	Weight (lbs./foot)
1/4	.182	2-3/4	20.817	8-1/2	204.154
5/16	.285	2-7/8	22.725	8-3/4	211.460
3/8	.404	3	25.778	9	228.202
7/16	.545	3-1/8	27.896	9-1/2	253.589
1/2	.727	3-1/4	30.099	10	280.423
9/16	.912	3-1/2	34.754	10-1/2	308.492
5/8	1.117	3-3/4	39.745	11	337.900
11/16	1.344	4	45.070	11-1/2	368.646
3/4	1.591	4-1/4	51.079	12	400.928
7/8	2.157	4-1/2	57.094	12-1/2	434.359
1	2.799	4-3/4	63.443	13	469.130
1-1/8	3.525	5	70.126	13-1/2	505.238
1-1/4	4.335	5-1/4	77.145	14	543.372
1-3/8	5.225	5-1/2	84.498	14-1/2	582.182
1-1/2	6.206	5-3/4	92.185	15	622.331
1-5/8	7.408	6	100.207	16	706.644
1-3/4	8.564	6-1/4	109.830	17	796.311
1-7/8	9.803	6-1/2	118.571	18	891.333
2	11.125	6-3/4	127.646	19	991.709
2-1/8	12.531	7	137.057	20	1097.440
2-1/4	14.021	7-1/4	149.891	22	1324.964
2-3/8	15.595	7-1/2	160.074	24	1573.907
2-1/2	17.252	7-3/4	170.592	26	1844.266
2-5/8	18.993	8	181.445	28	2136.044

Alloys & Tool Steel

Notes: For Powdered Metal add 3% for weight.

DC53 rounds under 6-1/2" are hot rolled and oversized to finish at their normal size. Rounds 6-1/2" and over are rough turned and oversized to finish at their normal size. DC-53 is ordered to metric sizes and the weight (lbs./ft.) may vary compared to the imperial measurements.

M2 rounds are available in on-size diameters and oversize diameters. M2 rounds are available in 3/8" to 6" diameters.

Tool Steel Thickness & Width Oversize Ranges

De-Carb Free Flats and Squares

Size (inches)	Width - Based on Thickness (inches)	Thickness (inches)		
Through 4" thick	+.035 / +.077 oversize	+.015 / +.035 oversize		
Rough Milled 4" thru <5"	+.062 / +.124 oversize	+.062 / +.125 oversize		
Rough Milled 5" and over	+.062 / +.124 oversize	+.125 / +.250 oversize		

De-Carb Rounds, Typical Machining Allowances

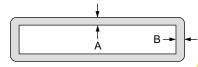
	Nominal Size (inches)	Oversize Tolerance (inches)
	1/2 to under 3	+0.007 to +0.062
Rough Turned Tolerances:	3 thru 6	+0.020 to +0.186
(All rounds 3" diameter and	Over 6 thru 7	+0.060 to +0.250
over are supplied with a	Over 7 thru 18	+0.090 to +0.375
Rough Turned tolerance)	Over 18	+0.118 to +0.375

Machining and Decarburization Allowances

When ordering hot rolled bar stock, allowances must be made for machining in order to remove all decarburized surface. Decarburization is caused by heating for forging or rolling, and annealing. To obtain a uniform surface hardness and keep warpage to a minimum on finished tools, it is necessary to remove all the decarburization from all surfaces before hardening.

The minimum allowances for machining and the maximum decarburization limits for rounds, hexagons, octagons, and flats are given in the following tables.

Minimum Allowances Per Side for Machining Prior to Heat Treatment for Hot Rolled Rounds							
Rounds Ordered Size (inches)Hot Rolled Forged Rough Turned							
Up to 1/2, incl.	.016	_	—				
Over 1/2 to 1, incl.	.031	_	_				
Over 1 to 2, incl.	.048	.072	—				
Over 2 to 3, incl.	.063	.094	.020				
Over 3 to 4, incl.	.088	.120	.024				
Over 4 to 5, incl.	.112	.145	.032				
Over 5 to 6, incl.	.150	.170	.040				
Over 6 to 8, incl.	.200	.200	.048				
Over 8	_	.200	.072				



Alloys & Tool Steel

Tool Steel, Hot Rolled

Machining and Decarburization Allowances

Maximum Decarburization Limits — 80% of allowances per side for machining

Minimum Allowances Per Side for Machining Prior to Heat Treatment for Hot-Rolled Square and Flat Bars

		Specified Width (inches)					
Specified Thickness (inches)		0 to 1/2 incl.	Over 1/2 to 1 incl.	Over 1 to 2 incl.	Over 2 to 3 incl.	Over 3 to 4 incl.	Over 4 to 5 incl.
0 to 1/2, incl.	А	.025	.025	.030	.035	.040	.045
0.10.172, 11101.	В	.025	.036	.044	.056	.068	.092
Over 1/2 to 1, incl.	Α		.045	.045	.050	.055	.060
	В		.045	.052	.064	.080	.104
Over 1 to 2, incl.	А			.065	.065	.070	.070
	В			.065	.075	.084	.112
Over 2 to 3, incl.	А				.085	.085	.085
	В				.085	.102	.120
Over 3 to 4, incl.	А					.115	.115
	В					.115	.127
Over 4 to 5, incl.	А						.150
	В						.150
Over 5 to 6, incl.	Α						
	В						
Over 6	А						
	В						

		Specified Width (inches)					
Specified Thickness (inches)		Over 5 to 6, incl.	Over 6 to 7, incl.	Over 7 to 8, incl.	Over 8 to 9, incl.	Over 9 to 10, incl.	
0 to 1/2, incl.	А	.050	.055	.060	.060	.060	
0 to 1/2, inci.	В	.104	.120	.136	.144	.152	
Over 1/2 to 1, incl.	А	.070	.070	.075	.075	.075	
	В	.120	.136	.160	.160	.160	
Over 1 to 2, incl.	А	.075	.075	.090	.095	.100	
	В	.124	.144	.168	.180	.180	
Over 2 to 3, incl.	А	.085	.090	.100	.100	.100	
	В	.136	.160	.180	.190	.190	
Over 3 to 4, incl.	А	.115	.115	.125	.125	.125	
	В	.140	.180	.190	.190	.190	
Over 4 to 5, incl.	А	.150	.150	.150	.150	.150	
	В	.165	.180	.190	.190	.190	
Over 5 to 6, incl.	А	.190	.190	.190	.190	.190	
	В	.190	.190	.190	.190	.190	
Over 6	А		.250	.250	.250	.250	
	В		.250	.250	.250	.250	

Alro Steel Metals Guide

Alloys & Tool Stee

Tool Steel, Hot Rolled

Machining and Decarburization Allowances

Minimum Allowances Per Side for Machining of Forged Squares and Flat Bars

A	B→

Alloys & Tool Steel

		Specified Width (inches)					
Specified Thickness (inches)		0 to 1/2 incl.	Over 1/2 to 1 incl.	Over 1 to 2 incl.	Over 2 to 3 incl.	Over 3 to 4 incl.	Over 4 to 5 incl.
0 to 1/2, incl.	А	.030	.030	.035	.040	.045	.055
	В	.030	.048	.064	.080	.100	.120
Over 1/2 to 1, incl.	А		.060	.060	.065	.065	.075
	В		.060	.072	.084	.100	.120
Over 1 to 2, incl.	А			.090	.090	.090	.100
	В			.090	.100	.108	.124
Over 2 to 3, incl.	А				.120	.120	.125
	В				.120	.130	.140
Over 3 to 4, incl.	А					.150	.150
	В					.150	.150
Over 4 to 5, incl.	А						.180
	В						.180
Over 5 to 6, incl.	А						
	В						
Over 6	А						
	В						

		Specified Width (inches)					
Specified Thickness (inches)		Over 5 to 6, incl.	Over 6 to 7, incl.	Over 7 to 8, incl.	Over 8 to 9, incl.	Over 9 to 10, incl.	
0 to 1/2, incl.	А	.065	.070	.075			
0 to 1/2, mor.	В	.144	.168	.200			
Over 1/2 to 1, incl.	А	.080	.085	.090	.100	.110	
	В	.144	.168	.200	.200	.200	
Over 1 to 2, incl.	А	.110	.115	.125	.140	.150	
	В	.148	.172	.200	.200	.200	
Over 2 to 3, incl.	А	.130	.135	.150	.160	.175	
Over 2 to 3, mor.	В	.148	.172	.200	.200	.200	
Over 3 to 4, incl.	А	.160	.180	.190	.210	.225	
Over 5 to 4, moi.	В	.160	.180	.190	.210	.225	
Over 4 to 5, incl.	А	.180	.190	.210	.225	.250	
Over 4 to 5, mor.	В	.180	.190	.210	.225	.250	
Over 5 to 6, incl.	А	.210	.225	.225	.250	.250	
	В	.210	.225	.225	.250	.250	
Over 6	А		.250	.250	.250	.250	
	В		.250	.250	.250	.250	

