

Toolox[®] 44

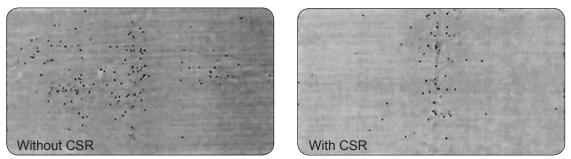
Pre-hardened Steel 45 HRC with ESR Properties

Toolox[®] 44 is a highly engineered quench & tempered pre-hardened tool and machine steel with measured and guaranteed mechanical properties. Toolox[®] 44 is delivered ready to use, no heat treating required, saving you valuable production time, reducing risks and lowering overall costs.

Product Features

- Quench and tempered steel
- Ready to use, no additional heat treatment required
- Easy to machine with good dimensional stability
- High strength and toughness at elevated temperatures
- Double the toughness of comparable steels at the same hardness
- Excellent for etching, polishing and EDM
- Low residual stress, no stress relieving required
- Excellent substrate for surface treatments
- Supplied as (HR) plate, thickness 1" to 5-1/8"

- Cold Work Tooling
- Machine Components
- Wear Components
- Guide Rails
- Plastic Molds
- Rubber Molds
- Press Forming
- Forging Dies
- Die Cast Dies

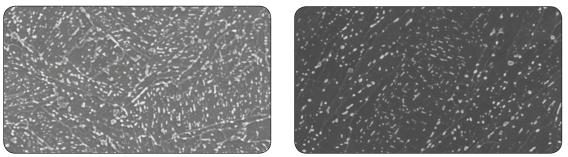


alro.com

Characteristics & Advantages

Toolox is a steel with ESR properties. The CSR casting process along with the low carbon concept gives a high degree of cleanliness and a homogenious structure. Fundamental factors that provide an excellent substrate for machining, polishing, texturing and EDM.

Homogeneity & low levels of inclusions



The fundamental idea behind Toolox is to deliver a steel that is hardened and ready for use, with tested and guaranteed physical properties. The CSR method of casting achieve the homogeneity and cleanliness at the same level as in ESR re-melted material. Every plate is uniquely produced.

Toughness

By utilizing a low carbon concept and a very high cooling rate, we have produced a steel that is two to three times tougher than comparable steels of similar hardness. The high hardness, in combination with excellent toughness, ensures lower tool wear and longer tool life.

Modified Carbide Morphology

The high cooling rate during quenching and a low carbide concept we have been able to modify the carbide morphology. Which is the basis for the high toughness.

Fatigue

Toolox has unique toughness and fatigue properties that remarkably increases the lifespan of the tool or machine component. Given the ultra-high cleanliness, the surface and not the steel is the critical consideration for the fatigue properties.

High Temperature Properties

Toolox 44 has high strength and toughness at elevated temperatures, even with extended contact times. This heat resistance makes Toolox 44 excellent for tools and components working at high temperature.

Physical Properties	+20°C / 68°F	200°C / 392°F	300°C / 572°F	400°C / 752°F	500°C / 932°F
Heat conductivity (W/m*K)	34	32		31	
Thermal expansion coefficient (10 ⁻⁵ /K)	13.5	13.5		13.5	

Characteristics & Advantages

Low Residual Stress

Toolox is a quenched and tempered material. The high tempering temperature produces very low residual stress levels. Even after heavy machining stress relieving is not required.

Etching, Polishing & EDM

The advanced CSR casting technology effectively produces a superior product free of segregation with very high levels of cleanliness. Toolox is excellent for etching, polishing and the EDM process.

Chemical composition	Toolox [®] 44
С	0.32%
Si	0.6 - 1.1%
Mn	0.8%
Р	Max 0.010%
S	Max 0.002%
Cr	1.35%
Мо	0.80%
V	0.14%
Ni	Max 1.0%

Welding & Gas Cutting

The quenching process used when producing Toolox offers the opportunity to use a lower alloy content compared to conventional grades, allowing better weldability and easier cutting.

Mechanical Properties	+20°C (68°F)	200°C (392°F)	300°C (572°F)	400°C (752°F)	500°C (932°F)
Hardness (HBW)	450				
Hardness (HRC)	~45				
Yield Strength R _{P0.2} (MPa)	1,300	1,150	1,120	1,060	930
Yield Strength R _{P0.2} (psi)	188,550	166,800	162,400	153,700	134,900
Tensile Strength R _M (MPa)	1,450	1,380			
Tensile Strength R _M (psi)	210,300	200,150			
Elongation, A ₅ , (%)	13	10			
Impact toughness, Charpy-V (J)	30	60	80	80	

Inclusions	Toolox [®] 44
Inclusion size (equivalent dia.)	6 micron
Area fraction	0.015%
Aspect ratio	1.2

Machining Recommendations

Despite a hardness of 45 HRC, Toolox 44 is easily machined. Toolox is based on a low carbon concept, with low carbide content. Carbides are hard to machine, the low carbide content offers excellent machinability.

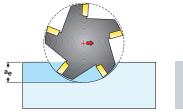
Clamping

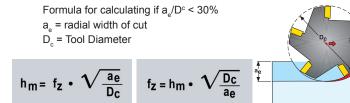
Toolox has a very low level of residual stresses. To maximize the benefits deformation-free clamping is recommended. If material is gas cut, mill off 5-10mm (0.196" - 0.393") from the gas-cut edge to get a blank free from residual stresses. We have modified the carbide morphology as compared to traditional tool steels, using less carbon in Toolox. Therefore, the heat generated during milling is transferred into the chip and not into the cutting edge/workpiece producing a very blue chip.

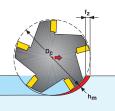
alro.com

Machining Recommendations

Solid End Milling


Application	Tool	First Choice	Size	ap x Dc	ae x Dc	Speed (sfm)	Speed n (rpm)	Feed fz (ipt)	Feed Rate Vf (in/min)
							All Cu	tting Data ar	e Start Values
		STR430.2-0.125-D2-R010.0-Z4	1/8	1.00	1.00	350	10,696	0.0006	26.7
01-4	Niagra Cutter™	STR430.2-0.188-D2-R010.0-Z4	3/16	1.00	1.00	350	7,131	0.0009	26.7
Slot	Stabilizer 2.0	STR430.2-0.250-D2-R020.0-Z4	1/4	1.00	1.00	350	5,348	0.0013	26.7
Milling	STR430.2	STR430.2-0.313-D2-R020.0-Z4	5/16	1.00	1.00	350	4,278	0.0016	26.7
		STR430.2-0.375-D2-R020.3-Z4	3/8	1.00	1.00	350	3,565	0.0019	26.7
		STR430.2-0.500-D2-R030.3-Z4	1/2	1.00	1.00	350	2,674	0.0025	26.7
		STR430.2-0.125-D2-R010.0-Z4	1/8	1.00	0.25	350	10,696	0.0008	32.1
Cido	Niagra Cutter™	STR430.2-0.188-D2-R010.0-Z4	3/16	1.00	0.25	350	7,131	0.0011	32.1
Side	Stabilizer 2.0	STR430.2-0.250-D2-R020.0-Z4	1/4	1.00	0.25	350	5,348	0.0015	32.1
Milling	STR430.2	STR430.2-0.313-D2-R020.0-Z4	5/16	1.00	0.25	350	4,278	0.0019	32.1
	0111100.2	STR430.2-0.375-D2-R020.3-Z4	3/8	1.00	0.25	350	3,565	0.0023	32.1
		STR430.2-0.500-D2-R030.3-Z4	1/2	1.00	0.25	350	2,674	0.0030	32.1
		All Cutting Data are Start Values							
		S638R-0.125-F3-R010.0-Z6	1/8	2.00	0.10	525	16,044	0.0008	78.0
Outlineined	Niagra Cutter™	S638R-0.188-F3-R010.0-Z6	3/16	2.00	0.10	525	10,696	0.0012	78.0
Optimized	Multi Flute	S638R-0.250-D3-R015.0-Z6	1/4	2.00	0.10	525	8,022	0.0016	78.0
Roughing	638R	S638R-0.313-D2-R015.0-Z6	5/16	2.00	0.10	525	6,418	0.0020	78.0
		S638R-0.375-D1-R015.0-Z6	3/8	2.00	0.10	525	5,348	0.0024	78.0
		S638R-0.500-D1-R015.0-Z6	1/2	2.00	0.10	525	4,011	0.0033	78.0
Tips	& Tricks	For optimal to	ol life an	d surface	finish, ru	n-out should	not exceed .(0004"	




Indexable Milling

Application	First Choice	Unstable Conditions	Grade / Groove	Speed (sfm)	Feed fz (ipt)	APMX / Depth
Facing	R220.53 Quattro Mill		MP1500 / M15	480	0.0075	0.160
		R220.53 Quattro Mill	MP3000 / MD19	420	0.0075	0.160
Copy Milling	R218.19 -160		MP1500 / M11	480	0.0350	0.050
cohà muund		R218.19 -160	MP2500 / M11	420	0.0400	0.040
Square Shoulder Fac	ing					
Diameter > 50%	R220.69 - Turbo 12		MP1500 / MD13	480	0.0051	0.180
Diamoloi - 30 /0		R220.69 - Turbo 12	MP3000 / MD13	420	0.0051	0.180
Square Shoulder Prof	iling					
20% or Less	R220.69 - Turbo 12		MP1500 / MD13	648	0.0070	0.310
Engagement		R220.69 - Turbo 12	MP3000 / MD13	570	0.0070	0.310
Square Shoulder Prof	iling					
10% or Less	R220.69 - Turbo 12		MP1500 / MD13	672	0.0097	0.310
Engagement		R220.69 - Turbo 12	MP3000 / MD13	590	0.0097	0.310
Square Shoulder Prof	îling					
5% or Less	R220.69 - Turbo 12		MP1500 / MD13	720	0.0135	0.310
Engagement		R220.69 - Turbo 12	MP3000 / MD13	630	0.0135	0.310

Side Milling - Technical Info


> 50% Engagement

20% Engagement + 37% feed

10% Engagement + 90% feed

5% Engagement + 165% feed

Drilling & Tapping Recommendations

HSS drills recommended when you have unstable machine conditions. If the machine conditions are good you can use solid/brazed cemented carbide drill or drills with exchangeable heads.

Use an HSS-Co drill (8% Co) with a low helix angle and a robust core that can withstand high torques. Individual holes can be drilled with an ordinary HSS drill. For a rational production, either a microalloyed (HSS-E) or a Cobalt alloyed (HSS-Co) drill is recommended.

Sizes: mr	n (inches)	Τοοία	ox 44
۷ _c m/mir	n (sf./min)	~7	~7
Dc mm (sfm in)		Feed rate (mm/min) & speed (rpm)	Feed rate (in./min) & speed (rpm)
5	(16.5)	0.05 / 445	.0019 / 445
10	(33.0)	0.09 / 220	.0035 / 220
15	(49.5)	0.15 / 150	.0059 / 150
20	(66.0)	0.20 / 110	.0078 / 110
25	(82.5)	0.25 / 90	.0098 / 90
30	(99.0)	0.30 / 75	.0118 / 75
*35	(115.5)	0.35 / 63	.0137 / 63
*40	(132.0)	0.40 / 55	.0157 / 55

Drilling

First Choice	Diameter	Speed (sfm)	Feed Rate (ipr)	Tips & Tricks	
Niagra Cutter™ Universal™ Drill ND110X	Ø 8.0 mm	266	0.0055	For chip breaking issues increase feedrate.	

Tool	First Choice	Second Choice	Diameter	Speed (sfm)	Feed fz (ipt)	Tips & Tricks
FEEDMAX TM	SD20X-P		Ø 8.0 mm	209	0.0071	Decrease feedrate 20% for lengths over 7XD.
I LLDIMAA'''		SD20X-M	Ø 8.0 mm	251	0.0063	For chip breaking issues increase feedrate.

Tool / Insert	First Choice	Second Choice	Diameter	Speed (sfm)	Feed Rate (ipr)	Tips & Tricks
PERFOMAX™ T400D (center insert)	DP3000 (peripheral insert)	T250D (peripheral insert)	Ø 25 mm	623	0.0043	Use P1 chip- breaker and for chip breaking issues increase feedrate

Countersinking and counterboring are best performed using tools that have replaceable inserts. Always use a revolving pilot and use coolant.

Toolox [®] 44 -	Toolox [®] 44 - Countersink & Counterbore Recommendations						
C-bore Dia.	Speed m/min	RPM	Feedrate				
19 (0.748)	20 - 50 m/min 66 - 165 sf/min	335 - 840	.1020 mm/rev. .00390078 in/rev.				
24 (0.945)	20 - 50 m/min 66 - 165 sf/min	265 - 665	.1020 mm/rev. .00390078 in/rev.				
34 (1.339)	20 - 50 m/min 66 - 165 sf/min	185 - 470	.1020 mm/rev. .00390078 in/rev.				
42 (1.654)	20 - 50 m/min 66 - 165 sf/min	150 - 380	.1020 mm/rev. .00390078 in/rev.				
57 (2.244)	20 - 50 m/min 66 - 165 sf/min	110 - 280	.1020 mm/rev. .00390078 in/rev.				

Drilling & Tapping Recommendations

With the correct tools you can perform all tapping/thread milling operations using all Toolox grades. We recommend four-flute taps, which can withstand the very high torque that occurs during tapping in hard materials. If is not critical, the drilled hole can be 3% larger than standard. This will increase the lifetime of the tap.

- * Thread oil or thread paste is recommended as lubricant.
- * We recommend thread milling for thread below M5

Toolox [®] 44
3 - 5
Speed (rpm)
190 - 320
160 - 265
120 - 200
95 - 160
80 - 130
60 - 100
45 - 80

Tapping

Tool	First Choice	Speed (sfm)	Tips & Tricks			
	Metric					
	M5	90				
	M6	90				
	M7	90				
	M8	90				
	M10	90				
	M12	90				
Threadmaster™	M16	90	Not mandatory, the drill			
	M20	90	hole can be 3% larger			
	Inch		than the standard,			
Тар	10-32	90	this will increase the			
	1/4-20	90	tool life of the tap.			
	3/8-16	90				
	1/2-13	90				
	NPT					
	27	26				
	18	26				
	14	26				
	11.5	26				

Turning

Insert	Optimized		Stable Conditions		Unstable Conditions			Tips & Tricks		
	TH1500-Duratomic®		TP0501-Duratomic [®] Chrome			TP1501-Duratomic [®] Chrome				
CNMG432-MF2							For optimum efficiency, utilize wiper inserts whenever possible. This allows for better surface finish, and increased metal			
	f (in/rev)		f (in/rev)		f (in/rev)			removal rates.		
	0.004	0.008	0.012	0.004	0.008	0.012	0.004	0.008	0.012	
	SFM		SFM		SFM					
	760	570	450	675	500	395	635	395	300	

